apollo-performance-tuning
Optimize Apollo.io API performance. Use when improving API response times, reducing latency, or optimizing bulk operations. Trigger with phrases like "apollo performance", "optimize apollo", "apollo slow", "apollo latency", "speed up apollo". allowed-tools: Read, Write, Edit, Bash(gh:*), Bash(curl:*) version: 1.0.0 license: MIT author: Jeremy Longshore <jeremy@intentsolutions.io>
Allowed Tools
No tools specified
Provided by Plugin
apollo-pack
Claude Code skill pack for Apollo.io sales intelligence platform (24 skills)
Installation
This skill is included in the apollo-pack plugin:
/plugin install apollo-pack@claude-code-plugins-plus
Click to copy
Instructions
# Apollo Performance Tuning
## Overview
Optimize Apollo.io API performance through caching, connection pooling, request optimization, and efficient data handling.
## Performance Benchmarks
| Operation | Target Latency | Acceptable | Poor |
|-----------|---------------|------------|------|
| People Search | < 500ms | 500-1500ms | > 1500ms |
| Person Enrichment | < 1000ms | 1-3s | > 3s |
| Org Enrichment | < 800ms | 800ms-2s | > 2s |
| Bulk Operations | < 5s/100 | 5-15s/100 | > 15s/100 |
## 1. Connection Pooling
```typescript
// src/lib/apollo/http-agent.ts
import https from 'https';
import { Agent } from 'https';
// Reuse TCP connections
const httpsAgent = new Agent({
keepAlive: true,
keepAliveMsecs: 30000,
maxSockets: 10,
maxFreeSockets: 5,
timeout: 30000,
});
export const apolloClient = axios.create({
baseURL: 'https://api.apollo.io/v1',
httpsAgent,
timeout: 30000,
headers: {
'Connection': 'keep-alive',
},
});
```
## 2. Response Caching
```typescript
// src/lib/apollo/cache.ts
import { LRUCache } from 'lru-cache';
interface CacheEntry {
data: T;
timestamp: number;
}
class ApolloCache {
private cache: LRUCache>;
constructor() {
this.cache = new LRUCache({
max: 1000, // Max entries
ttl: 5 * 60 * 1000, // 5 minutes default
updateAgeOnGet: true,
});
}
generateKey(operation: string, params: any): string {
return `${operation}:${JSON.stringify(params)}`;
}
get(key: string): T | null {
const entry = this.cache.get(key) as CacheEntry | undefined;
return entry?.data || null;
}
set(key: string, data: T, ttlMs?: number): void {
this.cache.set(key, { data, timestamp: Date.now() }, { ttl: ttlMs });
}
invalidate(pattern: string): void {
for (const key of this.cache.keys()) {
if (key.includes(pattern)) {
this.cache.delete(key);
}
}
}
getStats() {
return {
size: this.cache.size,
hitRate: this.cache.calculatedSize,
};
}
}
export const apolloCache = new ApolloCache();
// Cached wrapper
export async function cachedRequest(
key: string,
fetchFn: () => Promise,
ttlMs: number = 300000 // 5 min default
): Promise {
const cached = apolloCache.get(key);
if (cached) {
return cached;
}
const result = await fetchFn();
apolloCache.set(key, result, ttlMs);
return result;
}
```
### Cache Strategy by Endpoint
```typescript
// src/lib/apollo/cached-client.ts
const CACHE_CONFIG = {
// Long cache - data rarely changes
'organizations/enrich': 24 * 60 * 60 * 1000, // 24 hours
'organizations/search': 60 * 60 * 1000, // 1 hour
// Medium cache - occasional updates
'people/search': 15 * 60 * 1000, // 15 minutes
'people/match': 30 * 60 * 1000, // 30 minutes
// Short cache - frequently updated
'emailer_campaigns': 5 * 60 * 1000, // 5 minutes
// No cache - real-time data
'auth/health': 0,
};
export async function apolloRequest(
endpoint: string,
params: any,
method: 'GET' | 'POST' = 'POST'
): Promise {
const ttl = CACHE_CONFIG[endpoint] || 0;
if (ttl === 0) {
return apollo.request({ method, url: `/${endpoint}`, data: params });
}
const cacheKey = apolloCache.generateKey(endpoint, params);
return cachedRequest(
cacheKey,
() => apollo.request({ method, url: `/${endpoint}`, data: params }),
ttl
);
}
```
## 3. Request Optimization
### Minimize Payload Size
```typescript
// Request only needed fields
const optimizedSearch = await apollo.searchPeople({
q_organization_domains: ['stripe.com'],
per_page: 25,
// Only request fields you need
person_seniorities: ['vp', 'director'], // Filter upfront
});
// Transform response immediately to reduce memory
const contacts = response.people.map(p => ({
id: p.id,
name: p.name,
email: p.email,
title: p.title,
// Don't store unused fields
}));
```
### Parallel Requests with Concurrency Limit
```typescript
// src/lib/apollo/parallel.ts
import pLimit from 'p-limit';
const limit = pLimit(5); // Max 5 concurrent requests
export async function parallelEnrich(domains: string[]): Promise {
const results = await Promise.all(
domains.map(domain =>
limit(() => apolloRequest('organizations/enrich', { domain }))
)
);
return results.filter(Boolean);
}
```
### Batch Processing
```typescript
// src/lib/apollo/batch.ts
export async function batchSearch(
criteria: SearchCriteria[],
batchSize: number = 10
): Promise {
const results: Person[] = [];
for (let i = 0; i < criteria.length; i += batchSize) {
const batch = criteria.slice(i, i + batchSize);
// Process batch in parallel
const batchResults = await Promise.all(
batch.map(c => apollo.searchPeople(c))
);
results.push(...batchResults.flatMap(r => r.people));
// Rate limit between batches
if (i + batchSize < criteria.length) {
await new Promise(r => setTimeout(r, 100));
}
}
return results;
}
```
## 4. Query Optimization
### Use Specific Filters
```typescript
// BAD: Broad search, then filter client-side
const allPeople = await apollo.searchPeople({
q_organization_domains: ['stripe.com'],
per_page: 100,
});
const engineers = allPeople.people.filter(p =>
p.title?.toLowerCase().includes('engineer')
);
// GOOD: Filter at API level
const engineers = await apollo.searchPeople({
q_organization_domains: ['stripe.com'],
person_titles: ['engineer', 'developer', 'software'],
per_page: 100,
});
```
### Pagination Strategy
```typescript
// src/lib/apollo/pagination.ts
export async function efficientPagination(
searchParams: any,
maxResults: number = 1000
): Promise {
const results: Person[] = [];
let page = 1;
const perPage = 100; // Max allowed
while (results.length < maxResults) {
const response = await apollo.searchPeople({
...searchParams,
page,
per_page: perPage,
});
results.push(...response.people);
// Stop if no more results
if (response.people.length < perPage) {
break;
}
// Stop if we've reached total
if (page * perPage >= response.pagination.total_entries) {
break;
}
page++;
// Small delay to avoid rate limits
await new Promise(r => setTimeout(r, 50));
}
return results.slice(0, maxResults);
}
```
## 5. Performance Monitoring
```typescript
// src/lib/apollo/metrics.ts
import { Histogram, Counter } from 'prom-client';
const requestDuration = new Histogram({
name: 'apollo_request_duration_seconds',
help: 'Duration of Apollo API requests',
labelNames: ['endpoint', 'status'],
buckets: [0.1, 0.25, 0.5, 1, 2.5, 5, 10],
});
const requestCounter = new Counter({
name: 'apollo_requests_total',
help: 'Total Apollo API requests',
labelNames: ['endpoint', 'status'],
});
const cacheHitCounter = new Counter({
name: 'apollo_cache_hits_total',
help: 'Apollo cache hits',
labelNames: ['endpoint'],
});
export function instrumentedRequest(
endpoint: string,
requestFn: () => Promise
): Promise {
const end = requestDuration.startTimer({ endpoint });
return requestFn()
.then(result => {
end({ status: 'success' });
requestCounter.inc({ endpoint, status: 'success' });
return result;
})
.catch(error => {
end({ status: 'error' });
requestCounter.inc({ endpoint, status: 'error' });
throw error;
});
}
```
### Performance Dashboard Query
```typescript
// Example Grafana queries
const grafanaQueries = {
avgLatency: 'histogram_quantile(0.95, rate(apollo_request_duration_seconds_bucket[5m]))',
requestRate: 'rate(apollo_requests_total[5m])',
errorRate: 'rate(apollo_requests_total{status="error"}[5m]) / rate(apollo_requests_total[5m])',
cacheHitRate: 'rate(apollo_cache_hits_total[5m]) / rate(apollo_requests_total[5m])',
};
```
## Performance Checklist
- [ ] Connection pooling enabled (keep-alive)
- [ ] Response caching implemented
- [ ] Cache TTLs tuned per endpoint
- [ ] Parallel requests with concurrency limit
- [ ] Minimal data requested (no unused fields)
- [ ] Server-side filtering vs client-side
- [ ] Efficient pagination strategy
- [ ] Metrics and monitoring enabled
- [ ] Performance baseline established
## Output
- Connection pooling configuration
- LRU cache with TTL per endpoint
- Parallel request patterns
- Query optimization techniques
- Performance monitoring setup
## Error Handling
| Issue | Resolution |
|-------|------------|
| High latency | Check network, enable caching |
| Cache misses | Tune TTL, check key generation |
| Rate limits | Reduce concurrency, add delays |
| Memory issues | Limit cache size, stream results |
## Resources
- [Node.js HTTP Agent](https://nodejs.org/api/http.html#class-httpagent)
- [LRU Cache](https://github.com/isaacs/node-lru-cache)
- [Prometheus Metrics](https://prometheus.io/docs/concepts/metric_types/)
## Next Steps
Proceed to `apollo-cost-tuning` for cost optimization.