clay-load-scale
Implement Clay load testing, auto-scaling, and capacity planning strategies. Use when running performance tests, configuring horizontal scaling, or planning capacity for Clay integrations. Trigger with phrases like "clay load test", "clay scale", "clay performance test", "clay capacity", "clay k6", "clay benchmark". allowed-tools: Read, Write, Edit, Bash(k6:*), Bash(kubectl:*) version: 1.0.0 license: MIT author: Jeremy Longshore <jeremy@intentsolutions.io>
Allowed Tools
No tools specified
Provided by Plugin
clay-pack
Claude Code skill pack for Clay (30 skills)
Installation
This skill is included in the clay-pack plugin:
/plugin install clay-pack@claude-code-plugins-plus
Click to copy
Instructions
# Clay Load & Scale
## Overview
Load testing, scaling strategies, and capacity planning for Clay integrations.
## Prerequisites
- k6 load testing tool installed
- Kubernetes cluster with HPA configured
- Prometheus for metrics collection
- Test environment API keys
## Load Testing with k6
### Basic Load Test
```javascript
// clay-load-test.js
import http from 'k6/http';
import { check, sleep } from 'k6';
export const options = {
stages: [
{ duration: '2m', target: 10 }, // Ramp up
{ duration: '5m', target: 10 }, // Steady state
{ duration: '2m', target: 50 }, // Ramp to peak
{ duration: '5m', target: 50 }, // Stress test
{ duration: '2m', target: 0 }, // Ramp down
],
thresholds: {
http_req_duration: ['p(95)<500'],
http_req_failed: ['rate<0.01'],
},
};
export default function () {
const response = http.post(
'https://api.clay.com/v1/resource',
JSON.stringify({ test: true }),
{
headers: {
'Content-Type': 'application/json',
'Authorization': `Bearer ${__ENV.CLAY_API_KEY}`,
},
}
);
check(response, {
'status is 200': (r) => r.status === 200,
'latency < 500ms': (r) => r.timings.duration < 500,
});
sleep(1);
}
```
### Run Load Test
```bash
# Install k6
brew install k6 # macOS
# or: sudo apt install k6 # Linux
# Run test
k6 run --env CLAY_API_KEY=${CLAY_API_KEY} clay-load-test.js
# Run with output to InfluxDB
k6 run --out influxdb=http://localhost:8086/k6 clay-load-test.js
```
## Scaling Patterns
### Horizontal Scaling
```yaml
# kubernetes HPA
apiVersion: autoscaling/v2
kind: HorizontalPodAutoscaler
metadata:
name: clay-integration-hpa
spec:
scaleTargetRef:
apiVersion: apps/v1
kind: Deployment
name: clay-integration
minReplicas: 2
maxReplicas: 20
metrics:
- type: Resource
resource:
name: cpu
target:
type: Utilization
averageUtilization: 70
- type: Pods
pods:
metric:
name: clay_queue_depth
target:
type: AverageValue
averageValue: 100
```
### Connection Pooling
```typescript
import { Pool } from 'generic-pool';
const clayPool = Pool.create({
create: async () => {
return new ClayClient({
apiKey: process.env.CLAY_API_KEY!,
});
},
destroy: async (client) => {
await client.close();
},
max: 20,
min: 5,
idleTimeoutMillis: 30000,
});
async function withClayClient(
fn: (client: ClayClient) => Promise
): Promise {
const client = await clayPool.acquire();
try {
return await fn(client);
} finally {
clayPool.release(client);
}
}
```
## Capacity Planning
### Metrics to Monitor
| Metric | Warning | Critical |
|--------|---------|----------|
| CPU Utilization | > 70% | > 85% |
| Memory Usage | > 75% | > 90% |
| Request Queue Depth | > 100 | > 500 |
| Error Rate | > 1% | > 5% |
| P95 Latency | > 1000ms | > 3000ms |
### Capacity Calculation
```typescript
interface CapacityEstimate {
currentRPS: number;
maxRPS: number;
headroom: number;
scaleRecommendation: string;
}
function estimateClayCapacity(
metrics: SystemMetrics
): CapacityEstimate {
const currentRPS = metrics.requestsPerSecond;
const avgLatency = metrics.p50Latency;
const cpuUtilization = metrics.cpuPercent;
// Estimate max RPS based on current performance
const maxRPS = currentRPS / (cpuUtilization / 100) * 0.7; // 70% target
const headroom = ((maxRPS - currentRPS) / currentRPS) * 100;
return {
currentRPS,
maxRPS: Math.floor(maxRPS),
headroom: Math.round(headroom),
scaleRecommendation: headroom < 30
? 'Scale up soon'
: headroom < 50
? 'Monitor closely'
: 'Adequate capacity',
};
}
```
## Benchmark Results Template
```markdown
## Clay Performance Benchmark
**Date:** YYYY-MM-DD
**Environment:** [staging/production]
**SDK Version:** X.Y.Z
### Test Configuration
- Duration: 10 minutes
- Ramp: 10 โ 100 โ 10 VUs
- Target endpoint: /v1/resource
### Results
| Metric | Value |
|--------|-------|
| Total Requests | 50,000 |
| Success Rate | 99.9% |
| P50 Latency | 120ms |
| P95 Latency | 350ms |
| P99 Latency | 800ms |
| Max RPS Achieved | 150 |
### Observations
- [Key finding 1]
- [Key finding 2]
### Recommendations
- [Scaling recommendation]
```
## Instructions
### Step 1: Create Load Test Script
Write k6 test script with appropriate thresholds.
### Step 2: Configure Auto-Scaling
Set up HPA with CPU and custom metrics.
### Step 3: Run Load Test
Execute test and collect metrics.
### Step 4: Analyze and Document
Record results in benchmark template.
## Output
- Load test script created
- HPA configured
- Benchmark results documented
- Capacity recommendations defined
## Error Handling
| Issue | Cause | Solution |
|-------|-------|----------|
| k6 timeout | Rate limited | Reduce RPS |
| HPA not scaling | Wrong metrics | Verify metric name |
| Connection refused | Pool exhausted | Increase pool size |
| Inconsistent results | Warm-up needed | Add ramp-up phase |
## Examples
### Quick k6 Test
```bash
k6 run --vus 10 --duration 30s clay-load-test.js
```
### Check Current Capacity
```typescript
const metrics = await getSystemMetrics();
const capacity = estimateClayCapacity(metrics);
console.log('Headroom:', capacity.headroom + '%');
console.log('Recommendation:', capacity.scaleRecommendation);
```
### Scale HPA Manually
```bash
kubectl scale deployment clay-integration --replicas=5
kubectl get hpa clay-integration-hpa
```
## Resources
- [k6 Documentation](https://k6.io/docs/)
- [Kubernetes HPA](https://kubernetes.io/docs/tasks/run-application/horizontal-pod-autoscale/)
- [Clay Rate Limits](https://docs.clay.com/rate-limits)
## Next Steps
For reliability patterns, see `clay-reliability-patterns`.