clay-observability
Set up comprehensive observability for Clay integrations with metrics, traces, and alerts. Use when implementing monitoring for Clay operations, setting up dashboards, or configuring alerting for Clay integration health. Trigger with phrases like "clay monitoring", "clay metrics", "clay observability", "monitor clay", "clay alerts", "clay tracing". allowed-tools: Read, Write, Edit version: 1.0.0 license: MIT author: Jeremy Longshore <jeremy@intentsolutions.io>
Allowed Tools
No tools specified
Provided by Plugin
clay-pack
Claude Code skill pack for Clay (30 skills)
Installation
This skill is included in the clay-pack plugin:
/plugin install clay-pack@claude-code-plugins-plus
Click to copy
Instructions
# Clay Observability
## Overview
Set up comprehensive observability for Clay integrations.
## Prerequisites
- Prometheus or compatible metrics backend
- OpenTelemetry SDK installed
- Grafana or similar dashboarding tool
- AlertManager configured
## Metrics Collection
### Key Metrics
| Metric | Type | Description |
|--------|------|-------------|
| `clay_requests_total` | Counter | Total API requests |
| `clay_request_duration_seconds` | Histogram | Request latency |
| `clay_errors_total` | Counter | Error count by type |
| `clay_rate_limit_remaining` | Gauge | Rate limit headroom |
### Prometheus Metrics
```typescript
import { Registry, Counter, Histogram, Gauge } from 'prom-client';
const registry = new Registry();
const requestCounter = new Counter({
name: 'clay_requests_total',
help: 'Total Clay API requests',
labelNames: ['method', 'status'],
registers: [registry],
});
const requestDuration = new Histogram({
name: 'clay_request_duration_seconds',
help: 'Clay request duration',
labelNames: ['method'],
buckets: [0.05, 0.1, 0.25, 0.5, 1, 2.5, 5],
registers: [registry],
});
const errorCounter = new Counter({
name: 'clay_errors_total',
help: 'Clay errors by type',
labelNames: ['error_type'],
registers: [registry],
});
```
### Instrumented Client
```typescript
async function instrumentedRequest(
method: string,
operation: () => Promise
): Promise {
const timer = requestDuration.startTimer({ method });
try {
const result = await operation();
requestCounter.inc({ method, status: 'success' });
return result;
} catch (error: any) {
requestCounter.inc({ method, status: 'error' });
errorCounter.inc({ error_type: error.code || 'unknown' });
throw error;
} finally {
timer();
}
}
```
## Distributed Tracing
### OpenTelemetry Setup
```typescript
import { trace, SpanStatusCode } from '@opentelemetry/api';
const tracer = trace.getTracer('clay-client');
async function tracedClayCall(
operationName: string,
operation: () => Promise
): Promise {
return tracer.startActiveSpan(`clay.${operationName}`, async (span) => {
try {
const result = await operation();
span.setStatus({ code: SpanStatusCode.OK });
return result;
} catch (error: any) {
span.setStatus({ code: SpanStatusCode.ERROR, message: error.message });
span.recordException(error);
throw error;
} finally {
span.end();
}
});
}
```
## Logging Strategy
### Structured Logging
```typescript
import pino from 'pino';
const logger = pino({
name: 'clay',
level: process.env.LOG_LEVEL || 'info',
});
function logClayOperation(
operation: string,
data: Record,
duration: number
) {
logger.info({
service: 'clay',
operation,
duration_ms: duration,
...data,
});
}
```
## Alert Configuration
### Prometheus AlertManager Rules
```yaml
# clay_alerts.yaml
groups:
- name: clay_alerts
rules:
- alert: ClayHighErrorRate
expr: |
rate(clay_errors_total[5m]) /
rate(clay_requests_total[5m]) > 0.05
for: 5m
labels:
severity: warning
annotations:
summary: "Clay error rate > 5%"
- alert: ClayHighLatency
expr: |
histogram_quantile(0.95,
rate(clay_request_duration_seconds_bucket[5m])
) > 2
for: 5m
labels:
severity: warning
annotations:
summary: "Clay P95 latency > 2s"
- alert: ClayDown
expr: up{job="clay"} == 0
for: 1m
labels:
severity: critical
annotations:
summary: "Clay integration is down"
```
## Dashboard
### Grafana Panel Queries
```json
{
"panels": [
{
"title": "Clay Request Rate",
"targets": [{
"expr": "rate(clay_requests_total[5m])"
}]
},
{
"title": "Clay Latency P50/P95/P99",
"targets": [{
"expr": "histogram_quantile(0.5, rate(clay_request_duration_seconds_bucket[5m]))"
}]
}
]
}
```
## Instructions
### Step 1: Set Up Metrics Collection
Implement Prometheus counters, histograms, and gauges for key operations.
### Step 2: Add Distributed Tracing
Integrate OpenTelemetry for end-to-end request tracing.
### Step 3: Configure Structured Logging
Set up JSON logging with consistent field names.
### Step 4: Create Alert Rules
Define Prometheus alerting rules for error rates and latency.
## Output
- Metrics collection enabled
- Distributed tracing configured
- Structured logging implemented
- Alert rules deployed
## Error Handling
| Issue | Cause | Solution |
|-------|-------|----------|
| Missing metrics | No instrumentation | Wrap client calls |
| Trace gaps | Missing propagation | Check context headers |
| Alert storms | Wrong thresholds | Tune alert rules |
| High cardinality | Too many labels | Reduce label values |
## Examples
### Quick Metrics Endpoint
```typescript
app.get('/metrics', async (req, res) => {
res.set('Content-Type', registry.contentType);
res.send(await registry.metrics());
});
```
## Resources
- [Prometheus Best Practices](https://prometheus.io/docs/practices/naming/)
- [OpenTelemetry Documentation](https://opentelemetry.io/docs/)
- [Clay Observability Guide](https://docs.clay.com/observability)
## Next Steps
For incident response, see `clay-incident-runbook`.