๐Ÿ“… let's chat! explore the endless possibilities creating industries that don't exist. click here

databricks-common-errors

Diagnose and fix Databricks common errors and exceptions. Use when encountering Databricks errors, debugging failed jobs, or troubleshooting cluster and notebook issues. Trigger with phrases like "databricks error", "fix databricks", "databricks not working", "debug databricks", "spark error". allowed-tools: Read, Grep, Bash(databricks:*) version: 1.0.0 license: MIT author: Jeremy Longshore <jeremy@intentsolutions.io>

Allowed Tools

No tools specified

Provided by Plugin

databricks-pack

Claude Code skill pack for Databricks (24 skills)

saas packs v1.0.0
View Plugin

Installation

This skill is included in the databricks-pack plugin:

/plugin install databricks-pack@claude-code-plugins-plus

Click to copy

Instructions

# Databricks Common Errors ## Overview Quick reference for the top Databricks errors and their solutions. ## Prerequisites - Databricks CLI/SDK installed - API credentials configured - Access to cluster/job logs ## Instructions ### Step 1: Identify the Error Check error message in job run output, cluster logs, or notebook cells. ### Step 2: Find Matching Error Below Match your error to one of the documented cases. ### Step 3: Apply Solution Follow the solution steps for your specific error. ## Output - Identified error cause - Applied fix - Verified resolution ## Error Handling ### CLUSTER_NOT_READY **Error Message:** ``` ClusterNotReadyException: Cluster is not in a valid state ``` **Cause:** Cluster is starting, terminating, or in error state. **Solution:** ```python from databricks.sdk import WorkspaceClient from databricks.sdk.service.compute import State w = WorkspaceClient() cluster = w.clusters.get("cluster-id") if cluster.state in [State.PENDING, State.RESTARTING]: # Wait for cluster w.clusters.wait_get_cluster_running("cluster-id") elif cluster.state == State.TERMINATED: # Start cluster w.clusters.start("cluster-id") w.clusters.wait_get_cluster_running("cluster-id") elif cluster.state == State.ERROR: # Check termination reason print(f"Error: {cluster.termination_reason}") ``` --- ### SPARK_DRIVER_OOM (Out of Memory) **Error Message:** ``` java.lang.OutOfMemoryError: Java heap space SparkException: Job aborted due to stage failure ``` **Cause:** Driver or executor running out of memory. **Solution:** ```python # Increase driver memory in cluster config { "spark.driver.memory": "8g", "spark.executor.memory": "8g", "spark.sql.shuffle.partitions": "200" } # Or use more efficient operations # WRONG: collect() on large data all_data = df.collect() # DON'T DO THIS # RIGHT: process in chunks or use distributed operations df.write.format("delta").save("/path") # Keep data distributed ``` --- ### DELTA_CONCURRENT_WRITE **Error Message:** ``` ConcurrentAppendException: Files were added by a concurrent update ConcurrentDeleteReadException: A concurrent operation modified files ``` **Cause:** Multiple jobs writing to same Delta table simultaneously. **Solution:** ```python # Option 1: Retry with isolation level df.write \ .format("delta") \ .option("isolationLevel", "Serializable") \ .mode("append") \ .save("/path") # Option 2: Use merge with retry logic from delta.tables import DeltaTable import time def merge_with_retry(source_df, target_path, merge_condition, retries=3): for attempt in range(retries): try: delta_table = DeltaTable.forPath(spark, target_path) delta_table.alias("t").merge( source_df.alias("s"), merge_condition ).whenMatchedUpdateAll().whenNotMatchedInsertAll().execute() return except Exception as e: if "Concurrent" in str(e) and attempt < retries - 1: time.sleep(2 ** attempt) continue raise ``` --- ### PERMISSION_DENIED **Error Message:** ``` PermissionDeniedException: User does not have permission PERMISSION_DENIED: User does not have READ on table ``` **Cause:** Missing Unity Catalog or workspace permissions. **Solution:** ```sql -- Grant table permissions (Unity Catalog) GRANT SELECT ON TABLE catalog.schema.table TO `user@company.com`; GRANT ALL PRIVILEGES ON SCHEMA catalog.schema TO `data-team`; -- Check current permissions SHOW GRANTS ON TABLE catalog.schema.table; -- For workspace objects (Admin required) databricks permissions update jobs --job-id 123 --json '{ "access_control_list": [{ "user_name": "user@company.com", "permission_level": "CAN_MANAGE_RUN" }] }' ``` --- ### INVALID_PARAMETER_VALUE **Error Message:** ``` InvalidParameterValue: Instance type not supported Invalid Spark version ``` **Cause:** Wrong cluster configuration for workspace/cloud. **Solution:** ```python # Get valid node types for your workspace w = WorkspaceClient() node_types = list(w.clusters.list_node_types()) for nt in node_types[:5]: print(f"{nt.node_type_id}: {nt.memory_mb}MB, {nt.num_cores} cores") # Get valid Spark versions versions = list(w.clusters.spark_versions()) for v in versions[:5]: print(v.key) ``` --- ### SCHEMA_MISMATCH **Error Message:** ``` AnalysisException: Cannot merge incompatible data types Delta table schema does not match ``` **Cause:** Source data schema doesn't match target table. **Solution:** ```python # Option 1: Enable schema evolution df.write \ .format("delta") \ .option("mergeSchema", "true") \ .mode("append") \ .save("/path") # Option 2: Explicit schema alignment from pyspark.sql.types import StructType, StructField, StringType, IntegerType target_schema = spark.table("target_table").schema # Cast columns to match for field in target_schema: if field.name in df.columns: df = df.withColumn(field.name, col(field.name).cast(field.dataType)) # Option 3: Check differences before write source_cols = set(df.columns) target_cols = set(spark.table("target").columns) print(f"Missing in source: {target_cols - source_cols}") print(f"Extra in source: {source_cols - target_cols}") ``` --- ### RATE_LIMIT_EXCEEDED **Error Message:** ``` RateLimitExceeded: Too many requests HTTP 429: Rate limit exceeded ``` **Cause:** Too many API calls in short period. **Solution:** ```python # See databricks-rate-limits skill for full implementation from databricks.sdk.errors import TooManyRequests import time def api_call_with_backoff(operation, max_retries=5): for attempt in range(max_retries): try: return operation() except TooManyRequests: delay = 2 ** attempt print(f"Rate limited, waiting {delay}s...") time.sleep(delay) raise Exception("Max retries exceeded") ``` --- ### JOB_RUN_FAILED **Error Message:** ``` RunState: FAILED Run terminated with error: Task failed with error ``` **Cause:** Various - check run details for specific error. **Solution:** ```bash # Get detailed run info databricks runs get --run-id 12345 # Get run output (stdout/stderr) databricks runs get-output --run-id 12345 # Common fixes by task type: # - Notebook: Check cell output for exception # - Python: Check stderr for traceback # - JAR: Check cluster driver logs # - SQL: Check query execution details ``` ```python # Programmatic debugging w = WorkspaceClient() run = w.jobs.get_run(run_id=12345) print(f"State: {run.state.life_cycle_state}") print(f"Result: {run.state.result_state}") print(f"Message: {run.state.state_message}") for task in run.tasks: print(f"Task {task.task_key}: {task.state.result_state}") if task.state.result_state == "FAILED": output = w.jobs.get_run_output(task.run_id) print(f"Error: {output.error}") ``` ## Examples ### Quick Diagnostic Commands ```bash # Check cluster status databricks clusters get --cluster-id abc123 # Get recent job runs databricks runs list --job-id 456 --limit 5 # Check workspace permissions databricks permissions get jobs --job-id 456 # Validate cluster config databricks clusters create --json '{"cluster_name":"test",...}' --dry-run ``` ### Escalation Path 1. Collect evidence with `databricks-debug-bundle` 2. Check [Databricks Status](https://status.databricks.com) 3. Search [Databricks Community](https://community.databricks.com) 4. Contact support with workspace ID and request ID ## Resources - [Databricks Error Messages](https://docs.databricks.com/dev-tools/api/latest/error-messages.html) - [Troubleshooting Guide](https://docs.databricks.com/clusters/troubleshooting.html) - [Delta Lake Troubleshooting](https://docs.databricks.com/delta/troubleshooting.html) ## Next Steps For comprehensive debugging, see `databricks-debug-bundle`.

Skill file: plugins/saas-packs/databricks-pack/skills/databricks-common-errors/SKILL.md