๐Ÿ“… let's chat! explore the endless possibilities creating industries that don't exist. click here

databricks-cost-tuning

Optimize Databricks costs with cluster policies, spot instances, and monitoring. Use when reducing cloud spend, implementing cost controls, or analyzing Databricks usage costs. Trigger with phrases like "databricks cost", "reduce databricks spend", "databricks billing", "databricks cost optimization", "cluster cost". allowed-tools: Read, Write, Edit, Bash(databricks:*), Grep version: 1.0.0 license: MIT author: Jeremy Longshore <jeremy@intentsolutions.io>

Allowed Tools

No tools specified

Provided by Plugin

databricks-pack

Claude Code skill pack for Databricks (24 skills)

saas packs v1.0.0
View Plugin

Installation

This skill is included in the databricks-pack plugin:

/plugin install databricks-pack@claude-code-plugins-plus

Click to copy

Instructions

# Databricks Cost Tuning ## Overview Optimize Databricks costs through cluster policies, instance selection, and monitoring. ## Prerequisites - Workspace admin access - Access to billing data - Understanding of workload patterns ## Instructions ### Step 1: Implement Cluster Policies ```json // policies/cost_controlled_policy.json { "cluster_type": { "type": "fixed", "value": "job" }, "autotermination_minutes": { "type": "range", "minValue": 10, "maxValue": 60, "defaultValue": 30 }, "num_workers": { "type": "range", "minValue": 1, "maxValue": 10, "defaultValue": 2 }, "node_type_id": { "type": "allowlist", "values": [ "Standard_DS3_v2", "Standard_DS4_v2", "Standard_E4ds_v4" ], "defaultValue": "Standard_DS3_v2" }, "spark_version": { "type": "regex", "pattern": "14\\.[0-9]+\\.x-scala2\\.12" }, "azure_attributes.spot_bid_max_price": { "type": "fixed", "value": -1 }, "azure_attributes.first_on_demand": { "type": "fixed", "value": 1 }, "custom_tags.cost_center": { "type": "fixed", "value": "data-engineering" } } ``` ```python # Create policy via SDK from databricks.sdk import WorkspaceClient import json def create_cost_policy(w: WorkspaceClient, policy_name: str) -> str: """Create cost-controlled cluster policy.""" policy_definition = { "autotermination_minutes": { "type": "range", "minValue": 10, "maxValue": 60, "defaultValue": 30, }, "num_workers": { "type": "range", "minValue": 1, "maxValue": 10, }, "node_type_id": { "type": "allowlist", "values": [ "Standard_DS3_v2", "Standard_DS4_v2", ], }, "azure_attributes.spot_bid_max_price": { "type": "fixed", "value": -1, # Use spot instances }, "azure_attributes.first_on_demand": { "type": "fixed", "value": 1, # At least 1 on-demand for driver }, } policy = w.cluster_policies.create( name=policy_name, definition=json.dumps(policy_definition), ) return policy.policy_id ``` ### Step 2: Spot Instance Configuration ```yaml # resources/cost_optimized_cluster.yml job_clusters: - job_cluster_key: cost_optimized new_cluster: spark_version: "14.3.x-scala2.12" node_type_id: "Standard_DS3_v2" num_workers: 4 # Azure Spot Configuration azure_attributes: first_on_demand: 1 # Driver on-demand availability: SPOT_AZURE # Workers on spot spot_bid_max_price: -1 # Pay up to on-demand price # AWS Spot Configuration (alternative) # aws_attributes: # first_on_demand: 1 # availability: SPOT_WITH_FALLBACK # spot_bid_price_percent: 100 autoscale: min_workers: 1 max_workers: 8 custom_tags: cost_center: analytics environment: production ``` ### Step 3: Instance Pool for Faster Startup ```python # Create instance pool for reduced startup time and costs from databricks.sdk import WorkspaceClient from databricks.sdk.service.compute import ( InstancePoolAndStats, InstancePoolAzureAttributes, ) def create_cost_optimized_pool( w: WorkspaceClient, pool_name: str, min_idle: int = 1, max_capacity: int = 10, idle_timeout: int = 15, ) -> str: """ Create instance pool for cost optimization. Benefits: - Faster cluster startup (instances pre-warmed) - Lower spot instance preemption risk - Consistent performance """ pool = w.instance_pools.create( instance_pool_name=pool_name, node_type_id="Standard_DS3_v2", min_idle_instances=min_idle, max_capacity=max_capacity, idle_instance_autotermination_minutes=idle_timeout, azure_attributes=InstancePoolAzureAttributes( availability="SPOT_AZURE", spot_bid_max_price=-1, ), preloaded_spark_versions=["14.3.x-scala2.12"], custom_tags={ "pool_type": "cost_optimized", "managed_by": "terraform", }, ) return pool.instance_pool_id ``` ### Step 4: Cost Monitoring ```sql -- Analyze cluster costs from system tables SELECT cluster_name, cluster_id, DATE(usage_date) as date, SUM(usage_quantity) as dbu_usage, SUM(usage_quantity * list_price) as estimated_cost FROM system.billing.usage WHERE usage_date > current_date() - INTERVAL 30 DAYS AND usage_type = 'COMPUTE' GROUP BY cluster_name, cluster_id, DATE(usage_date) ORDER BY estimated_cost DESC; -- Top cost drivers by job SELECT job_name, COUNT(DISTINCT run_id) as runs, SUM(duration) / 3600000 as total_hours, AVG(duration) / 60000 as avg_minutes, SUM(dbu_usage) as total_dbus FROM system.lakeflow.job_run_timeline r JOIN system.billing.usage u ON r.cluster_id = u.cluster_id WHERE r.start_time > current_timestamp() - INTERVAL 30 DAYS GROUP BY job_name ORDER BY total_dbus DESC LIMIT 20; -- Identify idle clusters SELECT cluster_name, cluster_id, state, last_activity_time, TIMESTAMPDIFF(HOUR, last_activity_time, current_timestamp()) as idle_hours FROM system.compute.clusters WHERE state = 'RUNNING' AND TIMESTAMPDIFF(MINUTE, last_activity_time, current_timestamp()) > 30 ORDER BY idle_hours DESC; ``` ### Step 5: Cost Allocation Tags ```python # Implement cost allocation with tags from databricks.sdk import WorkspaceClient def enforce_cost_tags( w: WorkspaceClient, required_tags: list[str] = ["cost_center", "team", "environment"], ) -> list[dict]: """ Audit and report clusters missing required cost tags. Returns list of non-compliant clusters. """ non_compliant = [] for cluster in w.clusters.list(): tags = cluster.custom_tags or {} missing_tags = [t for t in required_tags if t not in tags] if missing_tags: non_compliant.append({ "cluster_id": cluster.cluster_id, "cluster_name": cluster.cluster_name, "missing_tags": missing_tags, "creator": cluster.creator_user_name, }) return non_compliant # Cost allocation report def generate_cost_report(w: WorkspaceClient, spark) -> dict: """Generate cost allocation report by tags.""" query = """ SELECT custom_tags:cost_center as cost_center, custom_tags:team as team, SUM(usage_quantity * list_price) as total_cost FROM system.billing.usage WHERE usage_date > current_date() - INTERVAL 30 DAYS GROUP BY custom_tags:cost_center, custom_tags:team ORDER BY total_cost DESC """ return spark.sql(query).toPandas().to_dict('records') ``` ### Step 6: Auto-Termination and Scheduling ```python # Job scheduling for cost optimization from databricks.sdk import WorkspaceClient from databricks.sdk.service.jobs import CronSchedule def configure_off_hours_schedule( w: WorkspaceClient, job_id: int, cron_expression: str = "0 0 2 * * ?", # 2 AM daily timezone: str = "America/New_York", ) -> None: """Configure job to run during off-peak hours.""" w.jobs.update( job_id=job_id, new_settings={ "schedule": { "quartz_cron_expression": cron_expression, "timezone_id": timezone, } } ) # Cluster auto-stop policy def set_aggressive_auto_termination( w: WorkspaceClient, cluster_id: str, minutes: int = 15, ) -> None: """Set aggressive auto-termination for development clusters.""" cluster = w.clusters.get(cluster_id) w.clusters.edit( cluster_id=cluster_id, spark_version=cluster.spark_version, node_type_id=cluster.node_type_id, autotermination_minutes=minutes, ) ``` ## Output - Cost-controlled cluster policies - Spot instance optimization - Instance pools configured - Cost monitoring dashboards - Auto-termination policies ## Error Handling | Issue | Cause | Solution | |-------|-------|----------| | Spot preemption | Instance reclaimed | Use first_on_demand for stability | | Policy violation | Cluster over limits | Adjust policy or request exception | | Missing tags | Manual cluster creation | Enforce policy with required tags | | High idle costs | Long auto-term timeout | Reduce to 15-30 minutes | ## Examples ### Cost Savings Calculator ```python def estimate_spot_savings( on_demand_cost: float, spot_ratio: float = 0.7, # 70% workers on spot spot_discount: float = 0.6, # 60% discount ) -> dict: """Estimate savings from spot instances.""" on_demand_portion = on_demand_cost * (1 - spot_ratio) spot_portion = on_demand_cost * spot_ratio * (1 - spot_discount) new_cost = on_demand_portion + spot_portion savings = on_demand_cost - new_cost return { "original_cost": on_demand_cost, "optimized_cost": new_cost, "savings": savings, "savings_percent": (savings / on_demand_cost) * 100, } ``` ### Weekly Cost Alert ```sql -- Alert when costs exceed threshold CREATE ALERT weekly_cost_alert AS SELECT SUM(usage_quantity * list_price) as weekly_cost FROM system.billing.usage WHERE usage_date > current_date() - INTERVAL 7 DAYS HAVING weekly_cost > 10000 -- $10k threshold SCHEDULE CRON '0 9 * * 1' -- Monday 9 AM NOTIFICATIONS (email_addresses = ['finops@company.com']); ``` ## Resources - [Databricks Pricing](https://databricks.com/product/pricing) - [Cluster Policies](https://docs.databricks.com/administration-guide/clusters/policies.html) - [Instance Pools](https://docs.databricks.com/clusters/instance-pools/index.html) - [Cost Management](https://docs.databricks.com/administration-guide/account-settings/billable-usage.html) ## Next Steps For reference architecture, see `databricks-reference-architecture`.

Skill file: plugins/saas-packs/databricks-pack/skills/databricks-cost-tuning/SKILL.md