databricks-upgrade-migration
Upgrade Databricks runtime versions and migrate between features. Use when upgrading DBR versions, migrating to Unity Catalog, or updating deprecated APIs and features. Trigger with phrases like "databricks upgrade", "DBR upgrade", "databricks migration", "unity catalog migration", "hive to unity". allowed-tools: Read, Write, Edit, Bash(databricks:*), Grep version: 1.0.0 license: MIT author: Jeremy Longshore <jeremy@intentsolutions.io>
Allowed Tools
No tools specified
Provided by Plugin
databricks-pack
Claude Code skill pack for Databricks (24 skills)
Installation
This skill is included in the databricks-pack plugin:
/plugin install databricks-pack@claude-code-plugins-plus
Click to copy
Instructions
# Databricks Upgrade & Migration
## Overview
Upgrade Databricks Runtime versions and migrate between platform features.
## Prerequisites
- Admin access to workspace
- Test environment for validation
- Understanding of current workload dependencies
## Instructions
### Step 1: Runtime Version Upgrade
#### Version Compatibility Matrix
| Current DBR | Target DBR | Breaking Changes | Migration Effort |
|-------------|------------|------------------|------------------|
| 12.x | 13.x | Spark 3.4 changes | Low |
| 13.x | 14.x | Python 3.10 default | Medium |
| 14.x | 15.x | Unity Catalog required | High |
#### Upgrade Process
```python
# scripts/upgrade_clusters.py
from databricks.sdk import WorkspaceClient
from databricks.sdk.service.compute import ClusterSpec
def upgrade_cluster_dbr(
w: WorkspaceClient,
cluster_id: str,
target_version: str = "14.3.x-scala2.12",
dry_run: bool = True,
) -> dict:
"""
Upgrade cluster to new DBR version.
Args:
w: WorkspaceClient
cluster_id: Cluster to upgrade
target_version: Target Spark version
dry_run: If True, only validate without applying
Returns:
Upgrade plan or result
"""
cluster = w.clusters.get(cluster_id)
upgrade_plan = {
"cluster_id": cluster_id,
"cluster_name": cluster.cluster_name,
"current_version": cluster.spark_version,
"target_version": target_version,
"changes": [],
}
# Check for deprecated configs
if cluster.spark_conf:
deprecated_configs = [
"spark.databricks.delta.preview.enabled",
"spark.sql.legacy.createHiveTableByDefault",
]
for config in deprecated_configs:
if config in cluster.spark_conf:
upgrade_plan["changes"].append({
"type": "remove_config",
"config": config,
"reason": "Deprecated in target version",
})
# Check for library updates
if cluster.cluster_libraries:
for lib in cluster.cluster_libraries:
# Check for incompatible versions
pass
if not dry_run:
# Apply upgrade
w.clusters.edit(
cluster_id=cluster_id,
spark_version=target_version,
# Remove deprecated configs
spark_conf={
k: v for k, v in (cluster.spark_conf or {}).items()
if k not in deprecated_configs
}
)
upgrade_plan["status"] = "APPLIED"
else:
upgrade_plan["status"] = "DRY_RUN"
return upgrade_plan
```
### Step 2: Unity Catalog Migration
#### Migration Steps
```sql
-- Step 1: Create Unity Catalog objects
CREATE CATALOG IF NOT EXISTS main;
CREATE SCHEMA IF NOT EXISTS main.migrated;
-- Step 2: Migrate tables from Hive Metastore
-- Option A: SYNC (keeps data in place)
SYNC SCHEMA main.migrated
FROM hive_metastore.old_schema;
-- Option B: CTAS (copies data)
CREATE TABLE main.migrated.customers AS
SELECT * FROM hive_metastore.old_schema.customers;
-- Step 3: Migrate views
CREATE VIEW main.migrated.customer_summary AS
SELECT * FROM hive_metastore.old_schema.customer_summary;
-- Step 4: Set up permissions
GRANT USAGE ON CATALOG main TO `data-team`;
GRANT SELECT ON SCHEMA main.migrated TO `data-team`;
-- Step 5: Verify migration
SHOW TABLES IN main.migrated;
DESCRIBE TABLE EXTENDED main.migrated.customers;
```
#### Python Migration Script
```python
# scripts/migrate_to_unity_catalog.py
from databricks.sdk import WorkspaceClient
from pyspark.sql import SparkSession
def migrate_schema_to_unity(
spark: SparkSession,
source_schema: str,
target_catalog: str,
target_schema: str,
tables: list[str] = None,
method: str = "sync", # "sync" or "copy"
) -> list[dict]:
"""
Migrate Hive Metastore schema to Unity Catalog.
Args:
spark: SparkSession
source_schema: Hive metastore schema (e.g., "hive_metastore.old_db")
target_catalog: Unity Catalog catalog name
target_schema: Target schema name
tables: Specific tables to migrate (None = all)
method: "sync" (in-place) or "copy" (duplicate data)
Returns:
List of migration results
"""
results = []
# Get tables to migrate
if tables is None:
tables_df = spark.sql(f"SHOW TABLES IN {source_schema}")
tables = [row.tableName for row in tables_df.collect()]
# Create target schema
spark.sql(f"CREATE SCHEMA IF NOT EXISTS {target_catalog}.{target_schema}")
for table in tables:
source_table = f"{source_schema}.{table}"
target_table = f"{target_catalog}.{target_schema}.{table}"
try:
if method == "sync":
# SYNC keeps data in original location
spark.sql(f"""
CREATE TABLE IF NOT EXISTS {target_table}
USING DELTA
LOCATION (SELECT location FROM
(DESCRIBE DETAIL {source_table}))
""")
else:
# Copy creates new data
spark.sql(f"""
CREATE TABLE {target_table}
DEEP CLONE {source_table}
""")
results.append({
"table": table,
"status": "SUCCESS",
"method": method,
})
except Exception as e:
results.append({
"table": table,
"status": "FAILED",
"error": str(e),
})
return results
```
### Step 3: API Migration (v2.0 to v2.1)
```python
# Migrate deprecated API calls
from databricks.sdk import WorkspaceClient
def migrate_api_calls(w: WorkspaceClient):
"""Update deprecated API usage patterns."""
# Old: clusters/create with deprecated params
# New: Use instance pools and policies
# Old: jobs/create with existing_cluster_id
# New: Use job_cluster_key for better isolation
# Old: dbfs/put for large files
# New: Use Volumes or cloud storage
# Old: Workspace API for notebooks
# New: Use Repos API for version control
pass
```
### Step 4: Delta Lake Upgrade
```python
# Upgrade Delta Lake protocol version
def upgrade_delta_tables(
spark: SparkSession,
catalog: str,
schema: str,
min_reader: int = 3,
min_writer: int = 7,
) -> list[dict]:
"""
Upgrade Delta Lake protocol for tables.
Protocol version benefits:
- Reader 2+: Column mapping
- Reader 3+: Deletion vectors
- Writer 5+: Change Data Feed
- Writer 7+: Deletion vectors, liquid clustering
"""
results = []
tables = spark.sql(f"SHOW TABLES IN {catalog}.{schema}").collect()
for table_row in tables:
table = f"{catalog}.{schema}.{table_row.tableName}"
try:
# Check current protocol
detail = spark.sql(f"DESCRIBE DETAIL {table}").first()
current_reader = detail.minReaderVersion
current_writer = detail.minWriterVersion
if current_reader < min_reader or current_writer < min_writer:
# Upgrade protocol
spark.sql(f"""
ALTER TABLE {table}
SET TBLPROPERTIES (
'delta.minReaderVersion' = '{min_reader}',
'delta.minWriterVersion' = '{min_writer}'
)
""")
results.append({
"table": table,
"status": "UPGRADED",
"from": f"r{current_reader}/w{current_writer}",
"to": f"r{min_reader}/w{min_writer}",
})
else:
results.append({
"table": table,
"status": "ALREADY_CURRENT",
})
except Exception as e:
results.append({
"table": table,
"status": "FAILED",
"error": str(e),
})
return results
```
## Output
- Upgraded DBR version
- Unity Catalog migration complete
- Updated API calls
- Delta Lake protocol upgraded
## Error Handling
| Issue | Cause | Solution |
|-------|-------|----------|
| Incompatible library | Version mismatch | Update library version |
| Permission error | Missing grants | Add Unity Catalog grants |
| Table sync failed | Location access | Check storage permissions |
| Protocol downgrade | Reader/writer too high | Clone to new table |
## Examples
### Complete Migration Runbook
```bash
#!/bin/bash
# migrate_workspace.sh
# 1. Pre-migration backup
echo "Creating backup..."
databricks workspace export-dir /production /tmp/backup --overwrite
# 2. Test migration on staging
echo "Testing on staging..."
databricks bundle deploy -t staging
databricks bundle run -t staging migration-test-job
# 3. Run migration
echo "Running migration..."
python scripts/migrate_to_unity_catalog.py
# 4. Validate migration
echo "Validating..."
databricks bundle run -t staging validation-job
# 5. Update jobs to use new tables
echo "Updating jobs..."
databricks bundle deploy -t prod
echo "Migration complete!"
```
## Resources
- [Databricks Runtime Release Notes](https://docs.databricks.com/release-notes/runtime/releases.html)
- [Unity Catalog Migration](https://docs.databricks.com/data-governance/unity-catalog/migrate.html)
- [Delta Lake Protocol Versions](https://docs.databricks.com/delta/versioning.html)
## Next Steps
For CI/CD integration, see `databricks-ci-integration`.