deepgram-observability

Set up comprehensive observability for Deepgram integrations with metrics, traces, and alerts. Use when implementing monitoring for Deepgram operations, setting up dashboards, or configuring alerting for Deepgram integration health. Trigger with phrases like "deepgram monitoring", "deepgram metrics", "deepgram observability", "monitor deepgram", "deepgram alerts", "deepgram tracing". allowed-tools: Read, Write, Edit, Bash(kubectl:*), Bash(curl:*) version: 1.0.0 license: MIT author: Jeremy Longshore <jeremy@intentsolutions.io>

Allowed Tools

No tools specified

Provided by Plugin

deepgram-pack

Claude Code skill pack for Deepgram (24 skills)

saas packs v1.0.0
View Plugin

Installation

This skill is included in the deepgram-pack plugin:

/plugin install deepgram-pack@claude-code-plugins-plus

Click to copy

Instructions

# Deepgram Observability ## Overview Implement comprehensive observability for Deepgram integrations including metrics, distributed tracing, logging, and alerting. ## Prerequisites - Prometheus or compatible metrics backend - OpenTelemetry SDK installed - Grafana or similar dashboarding tool - AlertManager configured ## Observability Pillars | Pillar | Tool | Purpose | |--------|------|---------| | Metrics | Prometheus | Performance & usage tracking | | Traces | OpenTelemetry | Request flow visibility | | Logs | Structured JSON | Debugging & audit | | Alerts | AlertManager | Incident notification | ## Instructions ### Step 1: Set Up Metrics Collection Implement Prometheus counters, histograms, and gauges for key operations. ### Step 2: Add Distributed Tracing Integrate OpenTelemetry for end-to-end request tracing. ### Step 3: Configure Structured Logging Set up JSON logging with consistent field names. ### Step 4: Create Alert Rules Define alerting rules for error rates and latency. ## Examples ### Prometheus Metrics ```typescript // lib/metrics.ts import { Registry, Counter, Histogram, Gauge, collectDefaultMetrics } from 'prom-client'; export const registry = new Registry(); collectDefaultMetrics({ register: registry }); // Request counters export const transcriptionRequests = new Counter({ name: 'deepgram_transcription_requests_total', help: 'Total number of transcription requests', labelNames: ['status', 'model', 'type'], registers: [registry], }); // Latency histogram export const transcriptionLatency = new Histogram({ name: 'deepgram_transcription_latency_seconds', help: 'Transcription request latency in seconds', labelNames: ['model', 'type'], buckets: [0.1, 0.5, 1, 2, 5, 10, 30, 60, 120], registers: [registry], }); // Audio duration processed export const audioProcessed = new Counter({ name: 'deepgram_audio_processed_seconds_total', help: 'Total audio duration processed in seconds', labelNames: ['model'], registers: [registry], }); // Active connections gauge export const activeConnections = new Gauge({ name: 'deepgram_active_connections', help: 'Number of active Deepgram connections', labelNames: ['type'], registers: [registry], }); // Rate limit hits export const rateLimitHits = new Counter({ name: 'deepgram_rate_limit_hits_total', help: 'Number of rate limit responses', registers: [registry], }); // Cost tracking export const estimatedCost = new Counter({ name: 'deepgram_estimated_cost_dollars', help: 'Estimated cost in dollars', labelNames: ['model'], registers: [registry], }); // Metrics endpoint export async function getMetrics(): Promise { return registry.metrics(); } ``` ### Instrumented Transcription Client ```typescript // lib/instrumented-client.ts import { createClient, DeepgramClient } from '@deepgram/sdk'; import { transcriptionRequests, transcriptionLatency, audioProcessed, estimatedCost, } from './metrics'; import { trace, context, SpanStatusCode } from '@opentelemetry/api'; import { logger } from './logger'; const tracer = trace.getTracer('deepgram-client'); const modelCosts: Record = { 'nova-2': 0.0043, 'nova': 0.0043, 'base': 0.0048, }; export class InstrumentedDeepgramClient { private client: DeepgramClient; constructor(apiKey: string) { this.client = createClient(apiKey); } async transcribeUrl(url: string, options: { model?: string } = {}) { const model = options.model || 'nova-2'; const startTime = Date.now(); return tracer.startActiveSpan('deepgram.transcribe', async (span) => { span.setAttribute('deepgram.model', model); span.setAttribute('deepgram.audio_url', url); try { const { result, error } = await this.client.listen.prerecorded.transcribeUrl( { url }, { model, smart_format: true } ); const duration = (Date.now() - startTime) / 1000; if (error) { transcriptionRequests.labels('error', model, 'prerecorded').inc(); span.setStatus({ code: SpanStatusCode.ERROR, message: error.message }); logger.error('Transcription failed', { model, error: error.message, duration, }); throw error; } // Record metrics transcriptionRequests.labels('success', model, 'prerecorded').inc(); transcriptionLatency.labels(model, 'prerecorded').observe(duration); const audioDuration = result.metadata.duration; audioProcessed.labels(model).inc(audioDuration); const cost = (audioDuration / 60) * (modelCosts[model] || 0.0043); estimatedCost.labels(model).inc(cost); span.setAttribute('deepgram.request_id', result.metadata.request_id); span.setAttribute('deepgram.audio_duration', audioDuration); span.setAttribute('deepgram.processing_time', duration); span.setStatus({ code: SpanStatusCode.OK }); logger.info('Transcription completed', { requestId: result.metadata.request_id, model, audioDuration, processingTime: duration, cost, }); return result; } catch (err) { const duration = (Date.now() - startTime) / 1000; transcriptionRequests.labels('exception', model, 'prerecorded').inc(); transcriptionLatency.labels(model, 'prerecorded').observe(duration); span.setStatus({ code: SpanStatusCode.ERROR, message: err instanceof Error ? err.message : 'Unknown error', }); logger.error('Transcription exception', { model, error: err instanceof Error ? err.message : 'Unknown', duration, }); throw err; } finally { span.end(); } }); } } ``` ### OpenTelemetry Configuration ```typescript // lib/tracing.ts import { NodeSDK } from '@opentelemetry/sdk-node'; import { getNodeAutoInstrumentations } from '@opentelemetry/auto-instrumentations-node'; import { OTLPTraceExporter } from '@opentelemetry/exporter-trace-otlp-grpc'; import { Resource } from '@opentelemetry/resources'; import { SemanticResourceAttributes } from '@opentelemetry/semantic-conventions'; const sdk = new NodeSDK({ resource: new Resource({ [SemanticResourceAttributes.SERVICE_NAME]: 'deepgram-service', [SemanticResourceAttributes.SERVICE_VERSION]: process.env.VERSION || '1.0.0', [SemanticResourceAttributes.DEPLOYMENT_ENVIRONMENT]: process.env.NODE_ENV || 'development', }), traceExporter: new OTLPTraceExporter({ url: process.env.OTEL_EXPORTER_OTLP_ENDPOINT || 'http://localhost:4317', }), instrumentations: [ getNodeAutoInstrumentations({ '@opentelemetry/instrumentation-http': { ignoreIncomingPaths: ['/health', '/metrics'], }, }), ], }); export function initTracing(): void { sdk.start(); process.on('SIGTERM', () => { sdk.shutdown() .then(() => console.log('Tracing terminated')) .catch((error) => console.error('Error terminating tracing', error)) .finally(() => process.exit(0)); }); } ``` ### Structured Logging ```typescript // lib/logger.ts import pino from 'pino'; export const logger = pino({ level: process.env.LOG_LEVEL || 'info', formatters: { level: (label) => ({ level: label }), }, base: { service: 'deepgram-service', version: process.env.VERSION || '1.0.0', environment: process.env.NODE_ENV || 'development', }, timestamp: pino.stdTimeFunctions.isoTime, }); // Specialized loggers export const transcriptionLogger = logger.child({ component: 'transcription' }); export const metricsLogger = logger.child({ component: 'metrics' }); export const alertLogger = logger.child({ component: 'alerts' }); ``` ### Grafana Dashboard Configuration ```json { "dashboard": { "title": "Deepgram Transcription Service", "panels": [ { "title": "Request Rate", "type": "graph", "targets": [ { "expr": "sum(rate(deepgram_transcription_requests_total[5m])) by (status)", "legendFormat": "{{status}}" } ] }, { "title": "Latency (P95)", "type": "graph", "targets": [ { "expr": "histogram_quantile(0.95, sum(rate(deepgram_transcription_latency_seconds_bucket[5m])) by (le, model))", "legendFormat": "{{model}}" } ] }, { "title": "Audio Processed (per hour)", "type": "stat", "targets": [ { "expr": "sum(increase(deepgram_audio_processed_seconds_total[1h]))/60", "legendFormat": "Minutes" } ] }, { "title": "Error Rate", "type": "gauge", "targets": [ { "expr": "sum(rate(deepgram_transcription_requests_total{status='error'}[5m])) / sum(rate(deepgram_transcription_requests_total[5m])) * 100" } ] }, { "title": "Estimated Cost Today", "type": "stat", "targets": [ { "expr": "sum(increase(deepgram_estimated_cost_dollars[24h]))" } ] }, { "title": "Active Connections", "type": "graph", "targets": [ { "expr": "deepgram_active_connections", "legendFormat": "{{type}}" } ] } ] } } ``` ### AlertManager Rules ```yaml # prometheus/rules/deepgram.yml groups: - name: deepgram-alerts rules: - alert: DeepgramHighErrorRate expr: | sum(rate(deepgram_transcription_requests_total{status="error"}[5m])) / sum(rate(deepgram_transcription_requests_total[5m])) > 0.05 for: 5m labels: severity: critical service: deepgram annotations: summary: "High Deepgram error rate (> 5%)" description: "Error rate is {{ $value | humanizePercentage }}" runbook: "https://wiki.example.com/runbooks/deepgram-errors" - alert: DeepgramHighLatency expr: | histogram_quantile(0.95, sum(rate(deepgram_transcription_latency_seconds_bucket[5m])) by (le) ) > 30 for: 5m labels: severity: warning service: deepgram annotations: summary: "High Deepgram latency (P95 > 30s)" description: "P95 latency is {{ $value | humanizeDuration }}" - alert: DeepgramRateLimited expr: increase(deepgram_rate_limit_hits_total[1h]) > 10 for: 0m labels: severity: warning service: deepgram annotations: summary: "Deepgram rate limiting detected" description: "{{ $value }} rate limit hits in the last hour" - alert: DeepgramCostSpike expr: | sum(increase(deepgram_estimated_cost_dollars[1h])) > sum(increase(deepgram_estimated_cost_dollars[1h] offset 1d)) * 2 for: 30m labels: severity: warning service: deepgram annotations: summary: "Deepgram cost spike detected" description: "Current hour cost is 2x yesterday's average" - alert: DeepgramNoRequests expr: | sum(rate(deepgram_transcription_requests_total[15m])) == 0 and sum(deepgram_transcription_requests_total) > 0 for: 15m labels: severity: warning service: deepgram annotations: summary: "No Deepgram requests in 15 minutes" description: "Service may be down or disconnected" ``` ### Health Check Endpoint ```typescript // routes/health.ts import express from 'express'; import { createClient } from '@deepgram/sdk'; import { getMetrics } from '../lib/metrics'; const router = express.Router(); interface HealthCheck { status: 'healthy' | 'degraded' | 'unhealthy'; timestamp: string; checks: Record; } router.get('/health', async (req, res) => { const health: HealthCheck = { status: 'healthy', timestamp: new Date().toISOString(), checks: {}, }; // Check Deepgram API const startTime = Date.now(); try { const client = createClient(process.env.DEEPGRAM_API_KEY!); const { error } = await client.manage.getProjects(); health.checks.deepgram = { status: error ? 'fail' : 'pass', latency: Date.now() - startTime, message: error?.message, }; } catch (err) { health.checks.deepgram = { status: 'fail', latency: Date.now() - startTime, message: err instanceof Error ? err.message : 'Unknown error', }; } // Determine overall status const failedChecks = Object.values(health.checks).filter(c => c.status === 'fail'); if (failedChecks.length > 0) { health.status = 'unhealthy'; } const statusCode = health.status === 'healthy' ? 200 : 503; res.status(statusCode).json(health); }); router.get('/metrics', async (req, res) => { res.set('Content-Type', 'text/plain'); res.send(await getMetrics()); }); export default router; ``` ## Resources - [Prometheus Best Practices](https://prometheus.io/docs/practices/naming/) - [OpenTelemetry Documentation](https://opentelemetry.io/docs/) - [Grafana Dashboard Examples](https://grafana.com/grafana/dashboards/) ## Next Steps Proceed to `deepgram-incident-runbook` for incident response procedures.

Skill file: plugins/saas-packs/deepgram-pack/skills/deepgram-observability/SKILL.md