๐Ÿ“… let's chat! explore the endless possibilities creating industries that don't exist. click here

documenso-performance-tuning

Optimize Documenso integration performance with caching, batching, and efficient patterns. Use when improving response times, reducing API calls, or optimizing bulk document operations. Trigger with phrases like "documenso performance", "optimize documenso", "documenso caching", "documenso batch operations". allowed-tools: Read, Write, Edit version: 1.0.0 license: MIT author: Jeremy Longshore <jeremy@intentsolutions.io>

Allowed Tools

No tools specified

Provided by Plugin

documenso-pack

Claude Code skill pack for Documenso (24 skills)

saas packs v1.0.0
View Plugin

Installation

This skill is included in the documenso-pack plugin:

/plugin install documenso-pack@claude-code-plugins-plus

Click to copy

Instructions

# Documenso Performance Tuning ## Overview Optimize Documenso integrations for speed, efficiency, and scalability. ## Prerequisites - Working Documenso integration - Performance monitoring in place - Redis or caching layer (recommended) ## Caching Strategies ### Step 1: Document Metadata Cache ```typescript import Redis from "ioredis"; const redis = new Redis(process.env.REDIS_URL); const CACHE_TTL = 300; // 5 minutes interface CachedDocument { id: string; title: string; status: string; recipientCount: number; cachedAt: string; } async function getDocumentCached( documentId: string ): Promise { // Try cache first const cacheKey = `doc:${documentId}`; const cached = await redis.get(cacheKey); if (cached) { return JSON.parse(cached); } // Fetch from API const client = getDocumensoClient(); const doc = await client.documents.getV0({ documentId }); // Cache the result const cacheData: CachedDocument = { id: doc.id!, title: doc.title!, status: doc.status!, recipientCount: doc.recipients?.length ?? 0, cachedAt: new Date().toISOString(), }; await redis.setex(cacheKey, CACHE_TTL, JSON.stringify(cacheData)); return cacheData; } // Invalidate cache on webhook events async function invalidateDocumentCache(documentId: string): Promise { await redis.del(`doc:${documentId}`); } ``` ### Step 2: Template Cache ```typescript // Templates change rarely - longer TTL const TEMPLATE_CACHE_TTL = 3600; // 1 hour async function getTemplateCached(templateId: string) { const cacheKey = `tmpl:${templateId}`; const cached = await redis.get(cacheKey); if (cached) { return JSON.parse(cached); } const client = getDocumensoClient(); const template = await client.templates.getV0({ templateId }); await redis.setex(cacheKey, TEMPLATE_CACHE_TTL, JSON.stringify(template)); return template; } // Bulk cache templates on startup async function warmTemplateCache(templateIds: string[]): Promise { const client = getDocumensoClient(); console.log(`Warming cache for ${templateIds.length} templates...`); for (const templateId of templateIds) { try { await getTemplateCached(templateId); } catch (error) { console.warn(`Failed to cache template ${templateId}`); } } } ``` ## Batch Operations ### Step 3: Batch Document Creation ```typescript import PQueue from "p-queue"; interface DocumentInput { title: string; templateId: string; recipients: Array<{ email: string; name: string }>; } async function batchCreateDocuments( inputs: DocumentInput[] ): Promise> { const results = new Map(); // title -> documentId // Queue with rate limiting const queue = new PQueue({ concurrency: 3, interval: 1000, intervalCap: 5, }); // Process in batches const promises = inputs.map((input) => queue.add(async () => { const envelope = await client.envelopes.useV0({ templateId: input.templateId, title: input.title, recipients: input.recipients.map((r, i) => ({ email: r.email, name: r.name, signerIndex: i, })), }); results.set(input.title, envelope.envelopeId!); return envelope; }) ); await Promise.all(promises); return results; } ``` ### Step 4: Batch Recipient Updates ```typescript // Use bulk API when available async function addRecipientsBatch( documentId: string, recipients: Array<{ email: string; name: string; role: string }> ): Promise { // Use createManyV0 for batch creation const result = await client.documentsRecipients.createManyV0({ documentId, recipients: recipients.map((r) => ({ email: r.email, name: r.name, role: r.role as any, })), }); return result.recipientIds ?? []; } ``` ## Connection Pooling ### Step 5: HTTP Client Optimization ```typescript import { Documenso } from "@documenso/sdk-typescript"; // Reuse client instance (connection pooling is handled internally) let clientInstance: Documenso | null = null; export function getDocumensoClient(): Documenso { if (!clientInstance) { clientInstance = new Documenso({ apiKey: process.env.DOCUMENSO_API_KEY ?? "", // SDK handles connection pooling internally timeoutMs: 30000, retryConfig: { strategy: "backoff", backoff: { initialInterval: 500, maxInterval: 30000, exponent: 1.5, maxElapsedTime: 120000, }, retryConnectionErrors: true, }, }); } return clientInstance; } ``` ## Response Size Optimization ### Step 6: Pagination for Large Lists ```typescript // Efficient pagination async function* iterateDocuments( pageSize = 100 ): AsyncGenerator { let page = 1; let hasMore = true; while (hasMore) { const result = await client.documents.findV0({ page, perPage: pageSize, }); const docs = result.documents ?? []; if (docs.length > 0) { yield docs; } hasMore = docs.length === pageSize; page++; } } // Usage async function processAllDocuments() { for await (const batch of iterateDocuments(100)) { console.log(`Processing ${batch.length} documents...`); await processBatch(batch); } } ``` ### Step 7: Field Selection (When Available) ```typescript // Request only needed fields to reduce payload size // Note: Check SDK for field selection support async function getDocumentStatus(documentId: string) { const doc = await client.documents.getV0({ documentId }); // Extract only what's needed return { id: doc.id, status: doc.status, completedAt: doc.completedAt, }; } ``` ## Async Processing ### Step 8: Background Job Queue ```typescript import Bull from "bull"; const documentQueue = new Bull("document-processing", { redis: process.env.REDIS_URL, }); // Add job instead of processing synchronously async function createDocumentAsync(input: DocumentInput): Promise { const job = await documentQueue.add("create-document", input, { attempts: 3, backoff: { type: "exponential", delay: 1000 }, }); return job.id.toString(); } // Process jobs in background documentQueue.process("create-document", async (job) => { const { title, templateId, recipients } = job.data; const envelope = await client.envelopes.useV0({ templateId, title, recipients: recipients.map((r: any, i: number) => ({ email: r.email, name: r.name, signerIndex: i, })), }); return { documentId: envelope.envelopeId }; }); ``` ## Performance Monitoring ### Step 9: Request Timing ```typescript class PerformanceMonitor { private timings: number[] = []; async track(operation: () => Promise): Promise { const start = Date.now(); try { return await operation(); } finally { const duration = Date.now() - start; this.timings.push(duration); // Keep last 1000 timings if (this.timings.length > 1000) { this.timings = this.timings.slice(-1000); } } } getMetrics() { const sorted = [...this.timings].sort((a, b) => a - b); return { count: this.timings.length, p50: sorted[Math.floor(sorted.length * 0.5)] ?? 0, p95: sorted[Math.floor(sorted.length * 0.95)] ?? 0, p99: sorted[Math.floor(sorted.length * 0.99)] ?? 0, avg: this.timings.reduce((a, b) => a + b, 0) / this.timings.length || 0, }; } } const perfMonitor = new PerformanceMonitor(); // Wrap API calls async function getDocumentTimed(documentId: string) { return perfMonitor.track(() => client.documents.getV0({ documentId }) ); } ``` ## Performance Checklist - [ ] Caching implemented for frequently accessed data - [ ] Batch operations used where available - [ ] Connection pooling via singleton client - [ ] Pagination for large result sets - [ ] Background processing for non-blocking operations - [ ] Request timing and monitoring in place - [ ] Rate limiting prevents API throttling - [ ] Cache invalidation on webhook events ## Output - Reduced API latency with caching - Efficient bulk operations - Background processing configured - Performance metrics available ## Error Handling | Performance Issue | Cause | Solution | |------------------|-------|----------| | Slow responses | No caching | Add caching layer | | Rate limits | Too many requests | Use queue/batching | | Memory issues | Large responses | Use pagination | | Timeout errors | Slow processing | Use background jobs | ## Resources - [Redis Caching](https://redis.io/docs/manual/patterns/) - [Bull Queue](https://github.com/OptimalBits/bull) - [p-queue](https://github.com/sindresorhus/p-queue) ## Next Steps For cost optimization, see `documenso-cost-tuning`.

Skill file: plugins/saas-packs/documenso-pack/skills/documenso-performance-tuning/SKILL.md