exa-load-scale
Implement Exa load testing, auto-scaling, and capacity planning strategies. Use when running performance tests, configuring horizontal scaling, or planning capacity for Exa integrations. Trigger with phrases like "exa load test", "exa scale", "exa performance test", "exa capacity", "exa k6", "exa benchmark". allowed-tools: Read, Write, Edit, Bash(k6:*), Bash(kubectl:*) version: 1.0.0 license: MIT author: Jeremy Longshore <jeremy@intentsolutions.io>
Allowed Tools
No tools specified
Provided by Plugin
exa-pack
Claude Code skill pack for Exa (30 skills)
Installation
This skill is included in the exa-pack plugin:
/plugin install exa-pack@claude-code-plugins-plus
Click to copy
Instructions
# Exa Load & Scale
## Overview
Load testing, scaling strategies, and capacity planning for Exa integrations.
## Prerequisites
- k6 load testing tool installed
- Kubernetes cluster with HPA configured
- Prometheus for metrics collection
- Test environment API keys
## Load Testing with k6
### Basic Load Test
```javascript
// exa-load-test.js
import http from 'k6/http';
import { check, sleep } from 'k6';
export const options = {
stages: [
{ duration: '2m', target: 10 }, // Ramp up
{ duration: '5m', target: 10 }, // Steady state
{ duration: '2m', target: 50 }, // Ramp to peak
{ duration: '5m', target: 50 }, // Stress test
{ duration: '2m', target: 0 }, // Ramp down
],
thresholds: {
http_req_duration: ['p(95)<500'],
http_req_failed: ['rate<0.01'],
},
};
export default function () {
const response = http.post(
'https://api.exa.com/v1/resource',
JSON.stringify({ test: true }),
{
headers: {
'Content-Type': 'application/json',
'Authorization': `Bearer ${__ENV.EXA_API_KEY}`,
},
}
);
check(response, {
'status is 200': (r) => r.status === 200,
'latency < 500ms': (r) => r.timings.duration < 500,
});
sleep(1);
}
```
### Run Load Test
```bash
# Install k6
brew install k6 # macOS
# or: sudo apt install k6 # Linux
# Run test
k6 run --env EXA_API_KEY=${EXA_API_KEY} exa-load-test.js
# Run with output to InfluxDB
k6 run --out influxdb=http://localhost:8086/k6 exa-load-test.js
```
## Scaling Patterns
### Horizontal Scaling
```yaml
# kubernetes HPA
apiVersion: autoscaling/v2
kind: HorizontalPodAutoscaler
metadata:
name: exa-integration-hpa
spec:
scaleTargetRef:
apiVersion: apps/v1
kind: Deployment
name: exa-integration
minReplicas: 2
maxReplicas: 20
metrics:
- type: Resource
resource:
name: cpu
target:
type: Utilization
averageUtilization: 70
- type: Pods
pods:
metric:
name: exa_queue_depth
target:
type: AverageValue
averageValue: 100
```
### Connection Pooling
```typescript
import { Pool } from 'generic-pool';
const exaPool = Pool.create({
create: async () => {
return new ExaClient({
apiKey: process.env.EXA_API_KEY!,
});
},
destroy: async (client) => {
await client.close();
},
max: 20,
min: 5,
idleTimeoutMillis: 30000,
});
async function withExaClient(
fn: (client: ExaClient) => Promise
): Promise {
const client = await exaPool.acquire();
try {
return await fn(client);
} finally {
exaPool.release(client);
}
}
```
## Capacity Planning
### Metrics to Monitor
| Metric | Warning | Critical |
|--------|---------|----------|
| CPU Utilization | > 70% | > 85% |
| Memory Usage | > 75% | > 90% |
| Request Queue Depth | > 100 | > 500 |
| Error Rate | > 1% | > 5% |
| P95 Latency | > 1000ms | > 3000ms |
### Capacity Calculation
```typescript
interface CapacityEstimate {
currentRPS: number;
maxRPS: number;
headroom: number;
scaleRecommendation: string;
}
function estimateExaCapacity(
metrics: SystemMetrics
): CapacityEstimate {
const currentRPS = metrics.requestsPerSecond;
const avgLatency = metrics.p50Latency;
const cpuUtilization = metrics.cpuPercent;
// Estimate max RPS based on current performance
const maxRPS = currentRPS / (cpuUtilization / 100) * 0.7; // 70% target
const headroom = ((maxRPS - currentRPS) / currentRPS) * 100;
return {
currentRPS,
maxRPS: Math.floor(maxRPS),
headroom: Math.round(headroom),
scaleRecommendation: headroom < 30
? 'Scale up soon'
: headroom < 50
? 'Monitor closely'
: 'Adequate capacity',
};
}
```
## Benchmark Results Template
```markdown
## Exa Performance Benchmark
**Date:** YYYY-MM-DD
**Environment:** [staging/production]
**SDK Version:** X.Y.Z
### Test Configuration
- Duration: 10 minutes
- Ramp: 10 โ 100 โ 10 VUs
- Target endpoint: /v1/resource
### Results
| Metric | Value |
|--------|-------|
| Total Requests | 50,000 |
| Success Rate | 99.9% |
| P50 Latency | 120ms |
| P95 Latency | 350ms |
| P99 Latency | 800ms |
| Max RPS Achieved | 150 |
### Observations
- [Key finding 1]
- [Key finding 2]
### Recommendations
- [Scaling recommendation]
```
## Instructions
### Step 1: Create Load Test Script
Write k6 test script with appropriate thresholds.
### Step 2: Configure Auto-Scaling
Set up HPA with CPU and custom metrics.
### Step 3: Run Load Test
Execute test and collect metrics.
### Step 4: Analyze and Document
Record results in benchmark template.
## Output
- Load test script created
- HPA configured
- Benchmark results documented
- Capacity recommendations defined
## Error Handling
| Issue | Cause | Solution |
|-------|-------|----------|
| k6 timeout | Rate limited | Reduce RPS |
| HPA not scaling | Wrong metrics | Verify metric name |
| Connection refused | Pool exhausted | Increase pool size |
| Inconsistent results | Warm-up needed | Add ramp-up phase |
## Examples
### Quick k6 Test
```bash
k6 run --vus 10 --duration 30s exa-load-test.js
```
### Check Current Capacity
```typescript
const metrics = await getSystemMetrics();
const capacity = estimateExaCapacity(metrics);
console.log('Headroom:', capacity.headroom + '%');
console.log('Recommendation:', capacity.scaleRecommendation);
```
### Scale HPA Manually
```bash
kubectl scale deployment exa-integration --replicas=5
kubectl get hpa exa-integration-hpa
```
## Resources
- [k6 Documentation](https://k6.io/docs/)
- [Kubernetes HPA](https://kubernetes.io/docs/tasks/run-application/horizontal-pod-autoscale/)
- [Exa Rate Limits](https://docs.exa.com/rate-limits)
## Next Steps
For reliability patterns, see `exa-reliability-patterns`.