๐Ÿ“… let's chat! explore the endless possibilities creating industries that don't exist. click here

exa-performance-tuning

Optimize Exa API performance with caching, batching, and connection pooling. Use when experiencing slow API responses, implementing caching strategies, or optimizing request throughput for Exa integrations. Trigger with phrases like "exa performance", "optimize exa", "exa latency", "exa caching", "exa slow", "exa batch". allowed-tools: Read, Write, Edit version: 1.0.0 license: MIT author: Jeremy Longshore <jeremy@intentsolutions.io>

Allowed Tools

No tools specified

Provided by Plugin

exa-pack

Claude Code skill pack for Exa (30 skills)

saas packs v1.0.0
View Plugin

Installation

This skill is included in the exa-pack plugin:

/plugin install exa-pack@claude-code-plugins-plus

Click to copy

Instructions

# Exa Performance Tuning ## Overview Optimize Exa API performance with caching, batching, and connection pooling. ## Prerequisites - Exa SDK installed - Understanding of async patterns - Redis or in-memory cache available (optional) - Performance monitoring in place ## Latency Benchmarks | Operation | P50 | P95 | P99 | |-----------|-----|-----|-----| | Read | 50ms | 150ms | 300ms | | Write | 100ms | 250ms | 500ms | | List | 75ms | 200ms | 400ms | ## Caching Strategy ### Response Caching ```typescript import { LRUCache } from 'lru-cache'; const cache = new LRUCache({ max: 1000, ttl: 60000, // 1 minute updateAgeOnGet: true, }); async function cachedExaRequest( key: string, fetcher: () => Promise, ttl?: number ): Promise { const cached = cache.get(key); if (cached) return cached as T; const result = await fetcher(); cache.set(key, result, { ttl }); return result; } ``` ### Redis Caching (Distributed) ```typescript import Redis from 'ioredis'; const redis = new Redis(process.env.REDIS_URL); async function cachedWithRedis( key: string, fetcher: () => Promise, ttlSeconds = 60 ): Promise { const cached = await redis.get(key); if (cached) return JSON.parse(cached); const result = await fetcher(); await redis.setex(key, ttlSeconds, JSON.stringify(result)); return result; } ``` ## Request Batching ```typescript import DataLoader from 'dataloader'; const exaLoader = new DataLoader( async (ids) => { // Batch fetch from Exa const results = await exaClient.batchGet(ids); return ids.map(id => results.find(r => r.id === id) || null); }, { maxBatchSize: 100, batchScheduleFn: callback => setTimeout(callback, 10), } ); // Usage - automatically batched const [item1, item2, item3] = await Promise.all([ exaLoader.load('id-1'), exaLoader.load('id-2'), exaLoader.load('id-3'), ]); ``` ## Connection Optimization ```typescript import { Agent } from 'https'; // Keep-alive connection pooling const agent = new Agent({ keepAlive: true, maxSockets: 10, maxFreeSockets: 5, timeout: 30000, }); const client = new ExaClient({ apiKey: process.env.EXA_API_KEY!, httpAgent: agent, }); ``` ## Pagination Optimization ```typescript async function* paginatedExaList( fetcher: (cursor?: string) => Promise<{ data: T[]; nextCursor?: string }> ): AsyncGenerator { let cursor: string | undefined; do { const { data, nextCursor } = await fetcher(cursor); for (const item of data) { yield item; } cursor = nextCursor; } while (cursor); } // Usage for await (const item of paginatedExaList(cursor => exaClient.list({ cursor, limit: 100 }) )) { await process(item); } ``` ## Performance Monitoring ```typescript async function measuredExaCall( operation: string, fn: () => Promise ): Promise { const start = performance.now(); try { const result = await fn(); const duration = performance.now() - start; console.log({ operation, duration, status: 'success' }); return result; } catch (error) { const duration = performance.now() - start; console.error({ operation, duration, status: 'error', error }); throw error; } } ``` ## Instructions ### Step 1: Establish Baseline Measure current latency for critical Exa operations. ### Step 2: Implement Caching Add response caching for frequently accessed data. ### Step 3: Enable Batching Use DataLoader or similar for automatic request batching. ### Step 4: Optimize Connections Configure connection pooling with keep-alive. ## Output - Reduced API latency - Caching layer implemented - Request batching enabled - Connection pooling configured ## Error Handling | Issue | Cause | Solution | |-------|-------|----------| | Cache miss storm | TTL expired | Use stale-while-revalidate | | Batch timeout | Too many items | Reduce batch size | | Connection exhausted | No pooling | Configure max sockets | | Memory pressure | Cache too large | Set max cache entries | ## Examples ### Quick Performance Wrapper ```typescript const withPerformance = (name: string, fn: () => Promise) => measuredExaCall(name, () => cachedExaRequest(`cache:${name}`, fn) ); ``` ## Resources - [Exa Performance Guide](https://docs.exa.com/performance) - [DataLoader Documentation](https://github.com/graphql/dataloader) - [LRU Cache Documentation](https://github.com/isaacs/node-lru-cache) ## Next Steps For cost optimization, see `exa-cost-tuning`.

Skill file: plugins/saas-packs/exa-pack/skills/exa-performance-tuning/SKILL.md