๐Ÿ“… let's chat! explore the endless possibilities creating industries that don't exist. click here

fireflies-observability

Set up comprehensive observability for Fireflies.ai integrations with metrics, traces, and alerts. Use when implementing monitoring for Fireflies.ai operations, setting up dashboards, or configuring alerting for Fireflies.ai integration health. Trigger with phrases like "fireflies monitoring", "fireflies metrics", "fireflies observability", "monitor fireflies", "fireflies alerts", "fireflies tracing". allowed-tools: Read, Write, Edit version: 1.0.0 license: MIT author: Jeremy Longshore <jeremy@intentsolutions.io>

Allowed Tools

No tools specified

Provided by Plugin

fireflies-pack

Claude Code skill pack for Fireflies.ai (24 skills)

saas packs v1.0.0
View Plugin

Installation

This skill is included in the fireflies-pack plugin:

/plugin install fireflies-pack@claude-code-plugins-plus

Click to copy

Instructions

# Fireflies.ai Observability ## Overview Set up comprehensive observability for Fireflies.ai integrations. ## Prerequisites - Prometheus or compatible metrics backend - OpenTelemetry SDK installed - Grafana or similar dashboarding tool - AlertManager configured ## Metrics Collection ### Key Metrics | Metric | Type | Description | |--------|------|-------------| | `fireflies_requests_total` | Counter | Total API requests | | `fireflies_request_duration_seconds` | Histogram | Request latency | | `fireflies_errors_total` | Counter | Error count by type | | `fireflies_rate_limit_remaining` | Gauge | Rate limit headroom | ### Prometheus Metrics ```typescript import { Registry, Counter, Histogram, Gauge } from 'prom-client'; const registry = new Registry(); const requestCounter = new Counter({ name: 'fireflies_requests_total', help: 'Total Fireflies.ai API requests', labelNames: ['method', 'status'], registers: [registry], }); const requestDuration = new Histogram({ name: 'fireflies_request_duration_seconds', help: 'Fireflies.ai request duration', labelNames: ['method'], buckets: [0.05, 0.1, 0.25, 0.5, 1, 2.5, 5], registers: [registry], }); const errorCounter = new Counter({ name: 'fireflies_errors_total', help: 'Fireflies.ai errors by type', labelNames: ['error_type'], registers: [registry], }); ``` ### Instrumented Client ```typescript async function instrumentedRequest( method: string, operation: () => Promise ): Promise { const timer = requestDuration.startTimer({ method }); try { const result = await operation(); requestCounter.inc({ method, status: 'success' }); return result; } catch (error: any) { requestCounter.inc({ method, status: 'error' }); errorCounter.inc({ error_type: error.code || 'unknown' }); throw error; } finally { timer(); } } ``` ## Distributed Tracing ### OpenTelemetry Setup ```typescript import { trace, SpanStatusCode } from '@opentelemetry/api'; const tracer = trace.getTracer('fireflies-client'); async function tracedFireflies.aiCall( operationName: string, operation: () => Promise ): Promise { return tracer.startActiveSpan(`fireflies.${operationName}`, async (span) => { try { const result = await operation(); span.setStatus({ code: SpanStatusCode.OK }); return result; } catch (error: any) { span.setStatus({ code: SpanStatusCode.ERROR, message: error.message }); span.recordException(error); throw error; } finally { span.end(); } }); } ``` ## Logging Strategy ### Structured Logging ```typescript import pino from 'pino'; const logger = pino({ name: 'fireflies', level: process.env.LOG_LEVEL || 'info', }); function logFireflies.aiOperation( operation: string, data: Record, duration: number ) { logger.info({ service: 'fireflies', operation, duration_ms: duration, ...data, }); } ``` ## Alert Configuration ### Prometheus AlertManager Rules ```yaml # fireflies_alerts.yaml groups: - name: fireflies_alerts rules: - alert: Fireflies.aiHighErrorRate expr: | rate(fireflies_errors_total[5m]) / rate(fireflies_requests_total[5m]) > 0.05 for: 5m labels: severity: warning annotations: summary: "Fireflies.ai error rate > 5%" - alert: Fireflies.aiHighLatency expr: | histogram_quantile(0.95, rate(fireflies_request_duration_seconds_bucket[5m]) ) > 2 for: 5m labels: severity: warning annotations: summary: "Fireflies.ai P95 latency > 2s" - alert: Fireflies.aiDown expr: up{job="fireflies"} == 0 for: 1m labels: severity: critical annotations: summary: "Fireflies.ai integration is down" ``` ## Dashboard ### Grafana Panel Queries ```json { "panels": [ { "title": "Fireflies.ai Request Rate", "targets": [{ "expr": "rate(fireflies_requests_total[5m])" }] }, { "title": "Fireflies.ai Latency P50/P95/P99", "targets": [{ "expr": "histogram_quantile(0.5, rate(fireflies_request_duration_seconds_bucket[5m]))" }] } ] } ``` ## Instructions ### Step 1: Set Up Metrics Collection Implement Prometheus counters, histograms, and gauges for key operations. ### Step 2: Add Distributed Tracing Integrate OpenTelemetry for end-to-end request tracing. ### Step 3: Configure Structured Logging Set up JSON logging with consistent field names. ### Step 4: Create Alert Rules Define Prometheus alerting rules for error rates and latency. ## Output - Metrics collection enabled - Distributed tracing configured - Structured logging implemented - Alert rules deployed ## Error Handling | Issue | Cause | Solution | |-------|-------|----------| | Missing metrics | No instrumentation | Wrap client calls | | Trace gaps | Missing propagation | Check context headers | | Alert storms | Wrong thresholds | Tune alert rules | | High cardinality | Too many labels | Reduce label values | ## Examples ### Quick Metrics Endpoint ```typescript app.get('/metrics', async (req, res) => { res.set('Content-Type', registry.contentType); res.send(await registry.metrics()); }); ``` ## Resources - [Prometheus Best Practices](https://prometheus.io/docs/practices/naming/) - [OpenTelemetry Documentation](https://opentelemetry.io/docs/) - [Fireflies.ai Observability Guide](https://docs.fireflies.com/observability) ## Next Steps For incident response, see `fireflies-incident-runbook`.

Skill file: plugins/saas-packs/fireflies-pack/skills/fireflies-observability/SKILL.md