๐Ÿ“… let's chat! explore the endless possibilities creating industries that don't exist. click here

groq-performance-tuning

Optimize Groq API performance with caching, batching, and connection pooling. Use when experiencing slow API responses, implementing caching strategies, or optimizing request throughput for Groq integrations. Trigger with phrases like "groq performance", "optimize groq", "groq latency", "groq caching", "groq slow", "groq batch". allowed-tools: Read, Write, Edit version: 1.0.0 license: MIT author: Jeremy Longshore <jeremy@intentsolutions.io>

Allowed Tools

No tools specified

Provided by Plugin

groq-pack

Claude Code skill pack for Groq (24 skills)

saas packs v1.0.0
View Plugin

Installation

This skill is included in the groq-pack plugin:

/plugin install groq-pack@claude-code-plugins-plus

Click to copy

Instructions

# Groq Performance Tuning ## Overview Optimize Groq API performance with caching, batching, and connection pooling. ## Prerequisites - Groq SDK installed - Understanding of async patterns - Redis or in-memory cache available (optional) - Performance monitoring in place ## Latency Benchmarks | Operation | P50 | P95 | P99 | |-----------|-----|-----|-----| | Read | 50ms | 150ms | 300ms | | Write | 100ms | 250ms | 500ms | | List | 75ms | 200ms | 400ms | ## Caching Strategy ### Response Caching ```typescript import { LRUCache } from 'lru-cache'; const cache = new LRUCache({ max: 1000, ttl: 60000, // 1 minute updateAgeOnGet: true, }); async function cachedGroqRequest( key: string, fetcher: () => Promise, ttl?: number ): Promise { const cached = cache.get(key); if (cached) return cached as T; const result = await fetcher(); cache.set(key, result, { ttl }); return result; } ``` ### Redis Caching (Distributed) ```typescript import Redis from 'ioredis'; const redis = new Redis(process.env.REDIS_URL); async function cachedWithRedis( key: string, fetcher: () => Promise, ttlSeconds = 60 ): Promise { const cached = await redis.get(key); if (cached) return JSON.parse(cached); const result = await fetcher(); await redis.setex(key, ttlSeconds, JSON.stringify(result)); return result; } ``` ## Request Batching ```typescript import DataLoader from 'dataloader'; const groqLoader = new DataLoader( async (ids) => { // Batch fetch from Groq const results = await groqClient.batchGet(ids); return ids.map(id => results.find(r => r.id === id) || null); }, { maxBatchSize: 100, batchScheduleFn: callback => setTimeout(callback, 10), } ); // Usage - automatically batched const [item1, item2, item3] = await Promise.all([ groqLoader.load('id-1'), groqLoader.load('id-2'), groqLoader.load('id-3'), ]); ``` ## Connection Optimization ```typescript import { Agent } from 'https'; // Keep-alive connection pooling const agent = new Agent({ keepAlive: true, maxSockets: 10, maxFreeSockets: 5, timeout: 30000, }); const client = new GroqClient({ apiKey: process.env.GROQ_API_KEY!, httpAgent: agent, }); ``` ## Pagination Optimization ```typescript async function* paginatedGroqList( fetcher: (cursor?: string) => Promise<{ data: T[]; nextCursor?: string }> ): AsyncGenerator { let cursor: string | undefined; do { const { data, nextCursor } = await fetcher(cursor); for (const item of data) { yield item; } cursor = nextCursor; } while (cursor); } // Usage for await (const item of paginatedGroqList(cursor => groqClient.list({ cursor, limit: 100 }) )) { await process(item); } ``` ## Performance Monitoring ```typescript async function measuredGroqCall( operation: string, fn: () => Promise ): Promise { const start = performance.now(); try { const result = await fn(); const duration = performance.now() - start; console.log({ operation, duration, status: 'success' }); return result; } catch (error) { const duration = performance.now() - start; console.error({ operation, duration, status: 'error', error }); throw error; } } ``` ## Instructions ### Step 1: Establish Baseline Measure current latency for critical Groq operations. ### Step 2: Implement Caching Add response caching for frequently accessed data. ### Step 3: Enable Batching Use DataLoader or similar for automatic request batching. ### Step 4: Optimize Connections Configure connection pooling with keep-alive. ## Output - Reduced API latency - Caching layer implemented - Request batching enabled - Connection pooling configured ## Error Handling | Issue | Cause | Solution | |-------|-------|----------| | Cache miss storm | TTL expired | Use stale-while-revalidate | | Batch timeout | Too many items | Reduce batch size | | Connection exhausted | No pooling | Configure max sockets | | Memory pressure | Cache too large | Set max cache entries | ## Examples ### Quick Performance Wrapper ```typescript const withPerformance = (name: string, fn: () => Promise) => measuredGroqCall(name, () => cachedGroqRequest(`cache:${name}`, fn) ); ``` ## Resources - [Groq Performance Guide](https://docs.groq.com/performance) - [DataLoader Documentation](https://github.com/graphql/dataloader) - [LRU Cache Documentation](https://github.com/isaacs/node-lru-cache) ## Next Steps For cost optimization, see `groq-cost-tuning`.

Skill file: plugins/saas-packs/groq-pack/skills/groq-performance-tuning/SKILL.md