klingai-debug-bundle
Execute set up comprehensive logging and debugging for Kling AI. Use when investigating issues or monitoring requests. Trigger with phrases like 'klingai debug', 'kling ai logging', 'trace klingai', 'monitor klingai requests'. allowed-tools: Read, Write, Edit, Grep version: 1.0.0 license: MIT author: Jeremy Longshore <jeremy@intentsolutions.io>
Allowed Tools
No tools specified
Provided by Plugin
klingai-pack
Kling AI skill pack - 30 skills for AI video generation, image-to-video, text-to-video, and production workflows
Installation
This skill is included in the klingai-pack plugin:
/plugin install klingai-pack@claude-code-plugins-plus
Click to copy
Instructions
# Klingai Debug Bundle
## Overview
This skill shows how to implement request/response logging, timing metrics, and debugging utilities for Kling AI integrations to quickly identify and resolve issues.
## Prerequisites
- Kling AI integration
- Python 3.8+ or Node.js 18+
- Logging infrastructure (optional but recommended)
## Instructions
Follow these steps to set up debugging:
1. **Configure Logging**: Set up structured logging
2. **Add Request Tracing**: Track all API requests
3. **Implement Timing**: Measure performance metrics
4. **Create Debug Utilities**: Build diagnostic tools
5. **Set Up Alerts**: Configure error notifications
## Output
Successful execution produces:
- Structured logging output
- Request traces with timing
- Performance metrics dashboard
- Debug reports for troubleshooting
## Error Handling
See `{baseDir}/references/errors.md` for comprehensive error handling.
## Examples
See `{baseDir}/references/examples.md` for detailed examples.
## Resources
- [Python Logging](https://docs.python.org/3/library/logging.html)
- [Structured Logging Best Practices](https://www.structlog.org/)
- [OpenTelemetry](https://opentelemetry.io/)