langchain-cost-tuning

Optimize LangChain API costs and token usage. Use when reducing LLM API expenses, implementing cost controls, or optimizing token consumption in production. Trigger with phrases like "langchain cost", "langchain tokens", "reduce langchain cost", "langchain billing", "langchain budget". allowed-tools: Read, Write, Edit version: 1.0.0 license: MIT author: Jeremy Longshore <jeremy@intentsolutions.io>

Allowed Tools

No tools specified

Provided by Plugin

langchain-pack

Claude Code skill pack for LangChain (24 skills)

saas packs v1.0.0
View Plugin

Installation

This skill is included in the langchain-pack plugin:

/plugin install langchain-pack@claude-code-plugins-plus

Click to copy

Instructions

# LangChain Cost Tuning ## Overview Strategies for reducing LLM API costs while maintaining quality in LangChain applications. ## Prerequisites - LangChain application in production - Access to API usage dashboard - Understanding of token pricing ## Instructions ### Step 1: Understand Token Pricing ```python # Current approximate pricing (check provider for current rates) PRICING = { "openai": { "gpt-4o": {"input": 0.005, "output": 0.015}, # per 1K tokens "gpt-4o-mini": {"input": 0.00015, "output": 0.0006}, "gpt-3.5-turbo": {"input": 0.0005, "output": 0.0015}, }, "anthropic": { "claude-3-5-sonnet": {"input": 0.003, "output": 0.015}, "claude-3-haiku": {"input": 0.00025, "output": 0.00125}, }, "google": { "gemini-1.5-pro": {"input": 0.00125, "output": 0.005}, "gemini-1.5-flash": {"input": 0.000075, "output": 0.0003}, } } def estimate_cost( input_tokens: int, output_tokens: int, model: str = "gpt-4o-mini" ) -> float: """Estimate API cost for a request.""" provider, model_name = model.split("/") if "/" in model else ("openai", model) rates = PRICING.get(provider, {}).get(model_name, {"input": 0.001, "output": 0.002}) return (input_tokens / 1000 * rates["input"]) + (output_tokens / 1000 * rates["output"]) ``` ### Step 2: Implement Token Counting ```python import tiktoken from langchain_core.callbacks import BaseCallbackHandler class CostTrackingCallback(BaseCallbackHandler): """Track token usage and costs.""" def __init__(self, model: str = "gpt-4o-mini"): self.model = model self.total_input_tokens = 0 self.total_output_tokens = 0 self.requests = 0 def on_llm_end(self, response, **kwargs) -> None: """Track tokens from LLM response.""" if response.llm_output and "token_usage" in response.llm_output: usage = response.llm_output["token_usage"] self.total_input_tokens += usage.get("prompt_tokens", 0) self.total_output_tokens += usage.get("completion_tokens", 0) self.requests += 1 @property def total_cost(self) -> float: return estimate_cost( self.total_input_tokens, self.total_output_tokens, self.model ) def report(self) -> dict: return { "requests": self.requests, "input_tokens": self.total_input_tokens, "output_tokens": self.total_output_tokens, "total_tokens": self.total_input_tokens + self.total_output_tokens, "estimated_cost": f"${self.total_cost:.4f}" } # Usage tracker = CostTrackingCallback() llm = ChatOpenAI(model="gpt-4o-mini", callbacks=[tracker]) # After operations print(tracker.report()) ``` ### Step 3: Optimize Prompt Length ```python import tiktoken def optimize_prompt( text: str, max_tokens: int = 2000, model: str = "gpt-4o-mini" ) -> str: """Truncate text to fit within token budget.""" encoding = tiktoken.encoding_for_model(model) tokens = encoding.encode(text) if len(tokens) <= max_tokens: return text # Truncate and add indicator truncated = encoding.decode(tokens[:max_tokens - 10]) return truncated + "... [truncated]" def summarize_context(long_text: str, llm) -> str: """Summarize long context to reduce tokens.""" if count_tokens(long_text) < 2000: return long_text summary_prompt = ChatPromptTemplate.from_template( "Summarize this text in 500 words or less, preserving key facts:\n\n{text}" ) chain = summary_prompt | llm | StrOutputParser() return chain.invoke({"text": long_text}) ``` ### Step 4: Model Tiering Strategy ```python from langchain_openai import ChatOpenAI from langchain_core.runnables import RunnableBranch # Define model tiers llm_cheap = ChatOpenAI(model="gpt-4o-mini", temperature=0) # $0.15/1M tokens llm_medium = ChatOpenAI(model="gpt-4o", temperature=0) # $5/1M tokens llm_powerful = ChatOpenAI(model="o1", temperature=0) # $15/1M tokens def select_model(input_data: dict) -> str: """Route to appropriate model based on task.""" task_type = input_data.get("task_type", "simple") if task_type in ["chat", "faq", "simple"]: return "cheap" elif task_type in ["analysis", "summary", "medium"]: return "medium" else: return "powerful" router = RunnableBranch( (lambda x: select_model(x) == "cheap", prompt | llm_cheap), (lambda x: select_model(x) == "medium", prompt | llm_medium), prompt | llm_powerful ) # Simple chat: ~$0.0001 per request # Complex analysis: ~$0.01 per request # Cost reduction: 100x for simple tasks ``` ### Step 5: Implement Caching ```python from langchain_core.globals import set_llm_cache from langchain_community.cache import RedisSemanticCache from langchain_openai import OpenAIEmbeddings # Semantic caching - finds similar queries embeddings = OpenAIEmbeddings(model="text-embedding-3-small") set_llm_cache(RedisSemanticCache( redis_url="redis://localhost:6379", embedding=embeddings, score_threshold=0.95 # High similarity required )) # Example savings: # - "What is Python?" and "What's Python?" -> Same cached response # - 100 similar queries -> 1 API call + 99 cache hits # - Potential 99% cost reduction for repetitive queries ``` ### Step 6: Set Budget Limits ```python class BudgetLimitCallback(BaseCallbackHandler): """Enforce budget limits.""" def __init__(self, daily_budget: float = 10.0, model: str = "gpt-4o-mini"): self.daily_budget = daily_budget self.model = model self.daily_spend = 0.0 self.last_reset = datetime.now().date() def on_llm_start(self, serialized, prompts, **kwargs) -> None: """Check budget before request.""" today = datetime.now().date() if today != self.last_reset: self.daily_spend = 0.0 self.last_reset = today if self.daily_spend >= self.daily_budget: raise RuntimeError(f"Daily budget of ${self.daily_budget} exceeded") def on_llm_end(self, response, **kwargs) -> None: """Update spend after request.""" if response.llm_output and "token_usage" in response.llm_output: usage = response.llm_output["token_usage"] cost = estimate_cost( usage.get("prompt_tokens", 0), usage.get("completion_tokens", 0), self.model ) self.daily_spend += cost # Usage budget_callback = BudgetLimitCallback(daily_budget=50.0) llm = ChatOpenAI(model="gpt-4o-mini", callbacks=[budget_callback]) ``` ## Cost Optimization Summary | Strategy | Potential Savings | Implementation Effort | |----------|-------------------|----------------------| | Model tiering | 50-100x | Medium | | Response caching | 50-99% | Low | | Prompt optimization | 10-50% | Low | | Semantic caching | 30-70% | Medium | | Budget limits | Risk mitigation | Low | ## Output - Token counting and cost tracking - Prompt optimization utilities - Model routing for cost efficiency - Budget enforcement callbacks ## Resources - [OpenAI Pricing](https://openai.com/pricing) - [Anthropic Pricing](https://www.anthropic.com/pricing) - [tiktoken](https://github.com/openai/tiktoken) ## Next Steps Use `langchain-reference-architecture` for scalable production patterns.

Skill file: plugins/saas-packs/langchain-pack/skills/langchain-cost-tuning/SKILL.md