langchain-debug-bundle

Collect LangChain debug evidence for troubleshooting and support. Use when preparing bug reports, collecting traces, or gathering diagnostic information for complex issues. Trigger with phrases like "langchain debug bundle", "langchain diagnostics", "langchain support info", "collect langchain logs", "langchain trace". allowed-tools: Read, Write, Edit, Bash(python:*), Grep version: 1.0.0 license: MIT author: Jeremy Longshore <jeremy@intentsolutions.io>

Allowed Tools

No tools specified

Provided by Plugin

langchain-pack

Claude Code skill pack for LangChain (24 skills)

saas packs v1.0.0
View Plugin

Installation

This skill is included in the langchain-pack plugin:

/plugin install langchain-pack@claude-code-plugins-plus

Click to copy

Instructions

# LangChain Debug Bundle ## Overview Collect comprehensive debug information for LangChain issues including traces, versions, and reproduction steps. ## Prerequisites - LangChain installed - Reproducible error condition - Access to logs and environment ## Instructions ### Step 1: Collect Environment Info ```python # debug_bundle.py import sys import platform import subprocess def collect_environment(): """Collect system and package information.""" info = { "python_version": sys.version, "platform": platform.platform(), "packages": {} } # Get LangChain package versions packages = [ "langchain", "langchain-core", "langchain-community", "langchain-openai", "langchain-anthropic", "openai", "anthropic" ] for pkg in packages: try: result = subprocess.run( [sys.executable, "-m", "pip", "show", pkg], capture_output=True, text=True ) for line in result.stdout.split("\n"): if line.startswith("Version:"): info["packages"][pkg] = line.split(":")[1].strip() except: info["packages"][pkg] = "not installed" return info print(collect_environment()) ``` ### Step 2: Enable Full Tracing ```python import os import langchain # Enable debug mode langchain.debug = True # Enable LangSmith tracing (if available) os.environ["LANGCHAIN_TRACING_V2"] = "true" os.environ["LANGCHAIN_PROJECT"] = "debug-session" # Custom callback for logging from langchain_core.callbacks import BaseCallbackHandler from datetime import datetime class DebugCallback(BaseCallbackHandler): def __init__(self): self.logs = [] def on_llm_start(self, serialized, prompts, **kwargs): self.logs.append({ "event": "llm_start", "time": datetime.now().isoformat(), "prompts": prompts }) def on_llm_end(self, response, **kwargs): self.logs.append({ "event": "llm_end", "time": datetime.now().isoformat(), "response": str(response) }) def on_llm_error(self, error, **kwargs): self.logs.append({ "event": "llm_error", "time": datetime.now().isoformat(), "error": str(error) }) def on_tool_start(self, serialized, input_str, **kwargs): self.logs.append({ "event": "tool_start", "time": datetime.now().isoformat(), "tool": serialized.get("name"), "input": input_str }) def on_tool_error(self, error, **kwargs): self.logs.append({ "event": "tool_error", "time": datetime.now().isoformat(), "error": str(error) }) ``` ### Step 3: Create Minimal Reproduction ```python # minimal_repro.py """ Minimal reproduction script for LangChain issue. Run with: python minimal_repro.py """ import os from langchain_openai import ChatOpenAI from langchain_core.prompts import ChatPromptTemplate # Setup (redact actual API key in report) os.environ["OPENAI_API_KEY"] = "sk-..." def reproduce_issue(): """Reproduce the issue with minimal code.""" try: llm = ChatOpenAI(model="gpt-4o-mini") prompt = ChatPromptTemplate.from_template("Test: {input}") chain = prompt | llm # This is where the error occurs result = chain.invoke({"input": "test"}) print(f"Success: {result}") except Exception as e: print(f"Error: {type(e).__name__}: {e}") import traceback traceback.print_exc() if __name__ == "__main__": reproduce_issue() ``` ### Step 4: Generate Debug Bundle ```python import json from datetime import datetime from pathlib import Path def create_debug_bundle(error_description: str, logs: list): """Create a complete debug bundle.""" bundle = { "created_at": datetime.now().isoformat(), "description": error_description, "environment": collect_environment(), "trace_logs": logs, "steps_to_reproduce": [ "1. Install packages: pip install langchain langchain-openai", "2. Set OPENAI_API_KEY environment variable", "3. Run: python minimal_repro.py" ] } # Save bundle output_path = Path("debug_bundle.json") output_path.write_text(json.dumps(bundle, indent=2)) print(f"Debug bundle saved to: {output_path}") return bundle # Usage debug_callback = DebugCallback() # Run your code with callback... # llm = ChatOpenAI(callbacks=[debug_callback]) create_debug_bundle( error_description="Chain fails with OutputParserException", logs=debug_callback.logs ) ``` ## Output - `debug_bundle.json` with full diagnostic information - `minimal_repro.py` for issue reproduction - Environment and version information - Trace logs with timestamps ## Debug Bundle Contents ```json { "created_at": "2025-01-06T12:00:00", "description": "Issue description", "environment": { "python_version": "3.11.0", "platform": "Linux-6.8.0", "packages": { "langchain": "0.3.0", "langchain-core": "0.3.0", "langchain-openai": "0.2.0" } }, "trace_logs": [...], "steps_to_reproduce": [...] } ``` ## Checklist Before Submitting - [ ] API keys redacted from all files - [ ] Minimal reproduction script works independently - [ ] Error message and stack trace included - [ ] Package versions documented - [ ] Expected vs actual behavior described ## Resources - [LangChain GitHub Issues](https://github.com/langchain-ai/langchain/issues) - [LangSmith Tracing](https://docs.smith.langchain.com/) - [LangChain Discord](https://discord.gg/langchain) ## Next Steps Use `langchain-common-errors` for quick fixes or escalate with the bundle.

Skill file: plugins/saas-packs/langchain-pack/skills/langchain-debug-bundle/SKILL.md