langchain-prod-checklist

Execute LangChain production deployment checklist. Use when preparing for production launch, validating deployment readiness, or auditing existing production LangChain applications. Trigger with phrases like "langchain production", "langchain prod ready", "deploy langchain", "langchain launch checklist", "production checklist". allowed-tools: Read, Write, Edit, Bash(python:*) version: 1.0.0 license: MIT author: Jeremy Longshore <jeremy@intentsolutions.io>

Allowed Tools

No tools specified

Provided by Plugin

langchain-pack

Claude Code skill pack for LangChain (24 skills)

saas packs v1.0.0
View Plugin

Installation

This skill is included in the langchain-pack plugin:

/plugin install langchain-pack@claude-code-plugins-plus

Click to copy

Instructions

# LangChain Production Checklist ## Overview Comprehensive checklist for deploying LangChain applications to production with reliability, security, and performance. ## Prerequisites - LangChain application developed and tested - Infrastructure provisioned - CI/CD pipeline configured ## Production Checklist ### 1. Configuration & Secrets - [ ] All API keys in secrets manager (not env vars in code) - [ ] Environment-specific configurations separated - [ ] Fallback values for non-critical settings - [ ] Configuration validation on startup ```python from pydantic_settings import BaseSettings from pydantic import Field, SecretStr class Settings(BaseSettings): """Validated configuration.""" openai_api_key: SecretStr = Field(..., env="OPENAI_API_KEY") model_name: str = "gpt-4o-mini" max_retries: int = Field(default=3, ge=1, le=10) timeout_seconds: int = Field(default=30, ge=5, le=120) class Config: env_file = ".env" settings = Settings() # Validates on import ``` ### 2. Error Handling & Resilience - [ ] Retry logic with exponential backoff - [ ] Fallback models configured - [ ] Circuit breaker for cascading failures - [ ] Graceful degradation strategy ```python from langchain_openai import ChatOpenAI from langchain_anthropic import ChatAnthropic primary = ChatOpenAI(model="gpt-4o-mini", max_retries=3) fallback = ChatAnthropic(model="claude-3-5-sonnet-20241022") robust_llm = primary.with_fallbacks([fallback]) ``` ### 3. Observability - [ ] Structured logging configured - [ ] Metrics collection enabled - [ ] Distributed tracing (LangSmith or OpenTelemetry) - [ ] Alerting rules defined ```python import os # LangSmith tracing os.environ["LANGCHAIN_TRACING_V2"] = "true" os.environ["LANGCHAIN_API_KEY"] = settings.langsmith_api_key os.environ["LANGCHAIN_PROJECT"] = "production" # Prometheus metrics from prometheus_client import Counter, Histogram llm_requests = Counter("langchain_llm_requests_total", "Total LLM requests") llm_latency = Histogram("langchain_llm_latency_seconds", "LLM latency") ``` ### 4. Performance - [ ] Caching configured for repeated queries - [ ] Connection pooling enabled - [ ] Timeout limits set - [ ] Batch processing for bulk operations ```python from langchain_core.globals import set_llm_cache from langchain_community.cache import RedisCache import redis # Production caching with Redis redis_client = redis.Redis.from_url(os.environ["REDIS_URL"]) set_llm_cache(RedisCache(redis_client)) ``` ### 5. Security - [ ] Input validation implemented - [ ] Output sanitization enabled - [ ] Rate limiting per user/IP - [ ] Audit logging for all LLM calls ```python from langchain_core.runnables import RunnableLambda def validate_input(input_data: dict) -> dict: """Validate and sanitize input.""" user_input = input_data.get("input", "") if len(user_input) > 10000: raise ValueError("Input too long") return input_data secure_chain = RunnableLambda(validate_input) | prompt | llm ``` ### 6. Testing - [ ] Unit tests for all chains - [ ] Integration tests with mock LLMs - [ ] Load tests completed - [ ] Chaos engineering (failure injection) ```python # pytest.ini [pytest] markers = unit: Unit tests integration: Integration tests load: Load tests ``` ### 7. Deployment - [ ] Health check endpoint - [ ] Graceful shutdown handling - [ ] Rolling deployment strategy - [ ] Rollback procedure documented ```python from fastapi import FastAPI from contextlib import asynccontextmanager @asynccontextmanager async def lifespan(app: FastAPI): # Startup print("Warming up LLM connections...") yield # Shutdown print("Cleaning up...") app = FastAPI(lifespan=lifespan) @app.get("/health") async def health_check(): return {"status": "healthy", "model": settings.model_name} ``` ### 8. Cost Management - [ ] Token counting implemented - [ ] Usage alerts configured - [ ] Cost allocation by tenant/feature - [ ] Budget limits enforced ```python import tiktoken def estimate_cost(text: str, model: str = "gpt-4o-mini") -> float: """Estimate API cost for text.""" encoding = tiktoken.encoding_for_model(model) tokens = len(encoding.encode(text)) # Approximate pricing (check current rates) cost_per_1k = {"gpt-4o-mini": 0.00015, "gpt-4o": 0.005} return (tokens / 1000) * cost_per_1k.get(model, 0.001) ``` ## Deployment Validation Script ```python #!/usr/bin/env python3 """Pre-deployment validation script.""" def run_checks(): checks = [] # Check 1: API key configured try: settings = Settings() checks.append(("API Key", "PASS")) except Exception as e: checks.append(("API Key", f"FAIL: {e}")) # Check 2: LLM connectivity try: llm = ChatOpenAI(model="gpt-4o-mini") llm.invoke("test") checks.append(("LLM Connection", "PASS")) except Exception as e: checks.append(("LLM Connection", f"FAIL: {e}")) # Check 3: Cache connectivity try: redis_client.ping() checks.append(("Cache (Redis)", "PASS")) except Exception as e: checks.append(("Cache (Redis)", f"FAIL: {e}")) for name, status in checks: print(f"[{status}] {name}") return all("PASS" in status for _, status in checks) if __name__ == "__main__": exit(0 if run_checks() else 1) ``` ## Resources - [LangChain Production Guide](https://python.langchain.com/docs/guides/productionization/) - [LangSmith](https://docs.smith.langchain.com/) - [Twelve-Factor App](https://12factor.net/) ## Next Steps After launch, use `langchain-observability` for monitoring.

Skill file: plugins/saas-packs/langchain-pack/skills/langchain-prod-checklist/SKILL.md