langchain-rate-limits

Implement LangChain rate limiting and backoff strategies. Use when handling API quotas, implementing retry logic, or optimizing request throughput for LLM providers. Trigger with phrases like "langchain rate limit", "langchain throttling", "langchain backoff", "langchain retry", "API quota". allowed-tools: Read, Write, Edit version: 1.0.0 license: MIT author: Jeremy Longshore <jeremy@intentsolutions.io>

Allowed Tools

No tools specified

Provided by Plugin

langchain-pack

Claude Code skill pack for LangChain (24 skills)

saas packs v1.0.0
View Plugin

Installation

This skill is included in the langchain-pack plugin:

/plugin install langchain-pack@claude-code-plugins-plus

Click to copy

Instructions

# LangChain Rate Limits ## Overview Implement robust rate limiting and retry strategies for LangChain applications to handle API quotas gracefully. ## Prerequisites - LangChain installed with LLM provider - Understanding of provider rate limits - tenacity package for advanced retry logic ## Instructions ### Step 1: Understand Provider Limits ```python # Common rate limits by provider: RATE_LIMITS = { "openai": { "gpt-4o": {"rpm": 10000, "tpm": 800000}, "gpt-4o-mini": {"rpm": 10000, "tpm": 4000000}, }, "anthropic": { "claude-3-5-sonnet": {"rpm": 4000, "tpm": 400000}, }, "google": { "gemini-1.5-pro": {"rpm": 360, "tpm": 4000000}, } } # rpm = requests per minute, tpm = tokens per minute ``` ### Step 2: Built-in Retry Configuration ```python from langchain_openai import ChatOpenAI # LangChain has built-in retry with exponential backoff llm = ChatOpenAI( model="gpt-4o-mini", max_retries=3, # Number of retries request_timeout=30, # Timeout per request ) ``` ### Step 3: Advanced Retry with Tenacity ```python from tenacity import ( retry, stop_after_attempt, wait_exponential, retry_if_exception_type ) from openai import RateLimitError, APIError @retry( stop=stop_after_attempt(5), wait=wait_exponential(multiplier=1, min=4, max=60), retry=retry_if_exception_type((RateLimitError, APIError)) ) def call_with_retry(chain, input_data): """Call chain with exponential backoff.""" return chain.invoke(input_data) # Usage result = call_with_retry(chain, {"input": "Hello"}) ``` ### Step 4: Rate Limiter Wrapper ```python import asyncio import time from collections import deque from threading import Lock class RateLimiter: """Token bucket rate limiter for API calls.""" def __init__(self, requests_per_minute: int = 60): self.rpm = requests_per_minute self.interval = 60.0 / requests_per_minute self.timestamps = deque() self.lock = Lock() def acquire(self): """Block until request can be made.""" with self.lock: now = time.time() # Remove timestamps older than 1 minute while self.timestamps and now - self.timestamps[0] > 60: self.timestamps.popleft() if len(self.timestamps) >= self.rpm: sleep_time = 60 - (now - self.timestamps[0]) if sleep_time > 0: time.sleep(sleep_time) self.timestamps.append(time.time()) # Usage with LangChain rate_limiter = RateLimiter(requests_per_minute=100) def rate_limited_call(chain, input_data): rate_limiter.acquire() return chain.invoke(input_data) ``` ### Step 5: Async Rate Limiting ```python import asyncio from asyncio import Semaphore class AsyncRateLimiter: """Async rate limiter with semaphore.""" def __init__(self, max_concurrent: int = 10): self.semaphore = Semaphore(max_concurrent) async def call(self, chain, input_data): async with self.semaphore: return await chain.ainvoke(input_data) # Batch processing with rate limiting async def process_batch(chain, inputs: list, max_concurrent: int = 5): limiter = AsyncRateLimiter(max_concurrent) tasks = [limiter.call(chain, inp) for inp in inputs] return await asyncio.gather(*tasks, return_exceptions=True) ``` ## Output - Configured retry logic with exponential backoff - Rate limiter class for request throttling - Async batch processing with concurrency control - Graceful handling of rate limit errors ## Examples ### Handling Rate Limits in Production ```python from langchain_openai import ChatOpenAI from langchain_core.runnables import RunnableConfig llm = ChatOpenAI( model="gpt-4o-mini", max_retries=5, ) # Use batch with max_concurrency inputs = [{"input": f"Query {i}"} for i in range(100)] results = chain.batch( inputs, config=RunnableConfig(max_concurrency=10) # Limit concurrent calls ) ``` ### Fallback on Rate Limit ```python from langchain_openai import ChatOpenAI from langchain_anthropic import ChatAnthropic primary = ChatOpenAI(model="gpt-4o-mini", max_retries=2) fallback = ChatAnthropic(model="claude-3-5-sonnet-20241022") # Automatically switch to fallback on rate limit robust_llm = primary.with_fallbacks([fallback]) ``` ## Error Handling | Error | Cause | Solution | |-------|-------|----------| | RateLimitError | Exceeded quota | Implement backoff, reduce concurrency | | Timeout | Request too slow | Increase timeout, check network | | 429 Too Many Requests | API throttled | Wait and retry with backoff | | Quota Exceeded | Monthly limit hit | Upgrade plan or switch provider | ## Resources - [OpenAI Rate Limits](https://platform.openai.com/docs/guides/rate-limits) - [Anthropic Rate Limits](https://docs.anthropic.com/en/api/rate-limits) - [tenacity Documentation](https://tenacity.readthedocs.io/) ## Next Steps Proceed to `langchain-security-basics` for security best practices.

Skill file: plugins/saas-packs/langchain-pack/skills/langchain-rate-limits/SKILL.md