๐Ÿ“… let's chat! explore the endless possibilities creating industries that don't exist. click here

langfuse-core-workflow-a

Execute Langfuse primary workflow: Tracing LLM calls and spans. Use when implementing LLM tracing, building traced AI features, or adding observability to existing LLM applications. Trigger with phrases like "langfuse tracing", "trace LLM calls", "add langfuse to openai", "langfuse spans", "track llm requests". allowed-tools: Read, Write, Edit, Bash(npm:*), Grep version: 1.0.0 license: MIT author: Jeremy Longshore <jeremy@intentsolutions.io>

Allowed Tools

No tools specified

Provided by Plugin

langfuse-pack

Claude Code skill pack for Langfuse LLM observability (24 skills)

saas packs v1.0.0
View Plugin

Installation

This skill is included in the langfuse-pack plugin:

/plugin install langfuse-pack@claude-code-plugins-plus

Click to copy

Instructions

# Langfuse Core Workflow A: Tracing LLM Calls ## Overview Primary workflow for Langfuse: end-to-end tracing of LLM calls, chains, and agents. ## Prerequisites - Completed `langfuse-install-auth` setup - Understanding of Langfuse trace hierarchy - LLM provider SDK (OpenAI, Anthropic, etc.) ## Instructions ### Step 1: Set Up Automatic OpenAI Tracing ```typescript import { observeOpenAI } from "langfuse"; import OpenAI from "openai"; // Wrap OpenAI client for automatic tracing const openai = observeOpenAI(new OpenAI()); // All calls are now automatically traced const response = await openai.chat.completions.create({ model: "gpt-4", messages: [ { role: "system", content: "You are a helpful assistant." }, { role: "user", content: "What is Langfuse?" }, ], }); ``` ### Step 2: Manual Tracing for Complex Flows ```typescript import { Langfuse } from "langfuse"; const langfuse = new Langfuse(); async function ragPipeline(query: string) { // Create top-level trace const trace = langfuse.trace({ name: "rag-pipeline", input: { query }, metadata: { pipeline: "rag-v1" }, }); // Span: Query embedding const embedSpan = trace.span({ name: "embed-query", input: { text: query }, }); const queryEmbedding = await embedText(query); embedSpan.end({ output: { dimensions: queryEmbedding.length }, metadata: { model: "text-embedding-ada-002" }, }); // Span: Vector search const searchSpan = trace.span({ name: "vector-search", input: { embedding: "vector[1536]" }, }); const documents = await searchVectorDB(queryEmbedding); searchSpan.end({ output: { documentCount: documents.length, topScore: documents[0]?.score, }, }); // Generation: LLM call with context const generation = trace.generation({ name: "generate-answer", model: "gpt-4", modelParameters: { temperature: 0.7, maxTokens: 500 }, input: { query, context: documents.map((d) => d.content), }, }); const answer = await generateAnswer(query, documents); generation.end({ output: answer.content, usage: { promptTokens: answer.usage.prompt_tokens, completionTokens: answer.usage.completion_tokens, totalTokens: answer.usage.total_tokens, }, }); // Update trace with final output trace.update({ output: { answer: answer.content }, }); return answer.content; } ``` ### Step 3: Trace Streaming Responses ```typescript async function streamingChat(messages: ChatMessage[]) { const trace = langfuse.trace({ name: "streaming-chat", input: { messages }, }); const generation = trace.generation({ name: "stream-response", model: "gpt-4", input: messages, }); const stream = await openai.chat.completions.create({ model: "gpt-4", messages, stream: true, }); let fullContent = ""; let usage = { promptTokens: 0, completionTokens: 0 }; for await (const chunk of stream) { const content = chunk.choices[0]?.delta?.content || ""; fullContent += content; // Track usage from final chunk if (chunk.usage) { usage = { promptTokens: chunk.usage.prompt_tokens, completionTokens: chunk.usage.completion_tokens, }; } yield content; } // End generation after stream completes generation.end({ output: fullContent, usage, }); trace.update({ output: { response: fullContent } }); } ``` ### Step 4: Link Traces to Parent Operations ```typescript // API endpoint that creates parent trace async function handleChatRequest(req: Request) { const trace = langfuse.trace({ name: "api/chat", userId: req.userId, sessionId: req.sessionId, input: req.body, }); // Pass trace to child operations const response = await processChat(trace, req.body.message); return response; } // Child function receives parent trace async function processChat( parentTrace: ReturnType, message: string ) { // Create child span under parent trace const span = parentTrace.span({ name: "process-chat", input: { message }, }); // OpenAI call linked to parent const response = await openai.chat.completions.create( { model: "gpt-4", messages: [{ role: "user", content: message }], }, { langfuseParent: span } // Link generation to span ); span.end({ output: response.choices[0].message }); return response.choices[0].message.content; } ``` ## Output - Automatic OpenAI tracing with zero code changes - Manual tracing for RAG and complex pipelines - Streaming response tracking - Linked parent-child trace hierarchy ## Error Handling | Issue | Cause | Solution | |-------|-------|----------| | Missing generations | Wrapper not applied | Use `observeOpenAI()` wrapper | | Orphaned spans | Missing `.end()` call | Always end spans in finally block | | No token usage | Stream without usage | Use `stream_options: {include_usage: true}` | | Broken hierarchy | Missing parent link | Pass `langfuseParent` option | ## Examples ### Anthropic Claude Tracing ```typescript import Anthropic from "@anthropic-ai/sdk"; import { Langfuse } from "langfuse"; const anthropic = new Anthropic(); const langfuse = new Langfuse(); async function callClaude(prompt: string) { const trace = langfuse.trace({ name: "claude-call", input: { prompt } }); const generation = trace.generation({ name: "claude-response", model: "claude-3-sonnet-20240229", input: [{ role: "user", content: prompt }], }); const response = await anthropic.messages.create({ model: "claude-3-sonnet-20240229", max_tokens: 1024, messages: [{ role: "user", content: prompt }], }); generation.end({ output: response.content[0].text, usage: { promptTokens: response.usage.input_tokens, completionTokens: response.usage.output_tokens, }, }); return response.content[0].text; } ``` ### LangChain Integration ```python from langchain.callbacks import LangfuseCallbackHandler from langchain.chat_models import ChatOpenAI from langchain.schema import HumanMessage # Create callback handler langfuse_handler = LangfuseCallbackHandler() # Pass to LLM llm = ChatOpenAI(callbacks=[langfuse_handler]) # All LangChain operations are now traced response = llm([HumanMessage(content="Hello!")]) ``` ### Tool/Function Calling Tracing ```typescript async function tracedToolCall(trace: Trace, toolName: string, args: any) { const span = trace.span({ name: `tool/${toolName}`, input: args, metadata: { type: "tool-call" }, }); try { const result = await executeTool(toolName, args); span.end({ output: result }); return result; } catch (error) { span.end({ level: "ERROR", statusMessage: String(error), }); throw error; } } ``` ## Resources - [Langfuse Tracing Guide](https://langfuse.com/docs/tracing) - [OpenAI Integration](https://langfuse.com/docs/integrations/openai) - [LangChain Integration](https://langfuse.com/docs/integrations/langchain) - [Streaming Guide](https://langfuse.com/docs/tracing-features/sessions) ## Next Steps For evaluation and scoring workflows, see `langfuse-core-workflow-b`.

Skill file: plugins/saas-packs/langfuse-pack/skills/langfuse-core-workflow-a/SKILL.md