๐Ÿ“… let's chat! explore the endless possibilities creating industries that don't exist. click here

langfuse-core-workflow-b

Execute Langfuse secondary workflow: Evaluation and scoring. Use when implementing LLM evaluation, adding user feedback, or setting up automated quality scoring for AI outputs. Trigger with phrases like "langfuse evaluation", "langfuse scoring", "rate llm outputs", "langfuse feedback", "evaluate ai responses". allowed-tools: Read, Write, Edit, Bash(npm:*), Grep version: 1.0.0 license: MIT author: Jeremy Longshore <jeremy@intentsolutions.io>

Allowed Tools

No tools specified

Provided by Plugin

langfuse-pack

Claude Code skill pack for Langfuse LLM observability (24 skills)

saas packs v1.0.0
View Plugin

Installation

This skill is included in the langfuse-pack plugin:

/plugin install langfuse-pack@claude-code-plugins-plus

Click to copy

Instructions

# Langfuse Core Workflow B: Evaluation & Scoring ## Overview Secondary workflow for Langfuse: evaluating and scoring LLM outputs for quality monitoring. ## Prerequisites - Completed `langfuse-core-workflow-a` (tracing setup) - Understanding of evaluation metrics - (Optional) Evaluation framework like RAGAS or custom evaluators ## Instructions ### Step 1: Add Manual Scores to Traces ```typescript import { Langfuse } from "langfuse"; const langfuse = new Langfuse(); async function scoreTrace( traceId: string, scores: { name: string; value: number; comment?: string }[] ) { for (const score of scores) { await langfuse.score({ traceId, name: score.name, value: score.value, comment: score.comment, }); } } // Usage after generating a response const trace = langfuse.trace({ name: "chat" }); // ... do LLM work ... // Add scores await scoreTrace(trace.id, [ { name: "relevance", value: 0.9, comment: "Directly answers question" }, { name: "accuracy", value: 0.85, comment: "Minor factual imprecision" }, { name: "helpfulness", value: 1.0, comment: "Very helpful response" }, ]); ``` ### Step 2: Capture User Feedback ```typescript // API endpoint for user feedback async function handleFeedback(req: { traceId: string; rating: "good" | "bad"; comment?: string; }) { await langfuse.score({ traceId: req.traceId, name: "user-feedback", value: req.rating === "good" ? 1 : 0, comment: req.comment, dataType: "BOOLEAN", // Renders as thumbs up/down in UI }); return { success: true }; } // Frontend integration function FeedbackButtons({ traceId }: { traceId: string }) { const submitFeedback = async (rating: "good" | "bad") => { await fetch("/api/feedback", { method: "POST", body: JSON.stringify({ traceId, rating }), }); }; return (
); } ``` ### Step 3: Automated Evaluation with LLM-as-Judge ```typescript async function evaluateWithLLM( traceId: string, question: string, answer: string, context: string[] ) { const evaluationPrompt = ` You are evaluating an AI assistant's response. Question: ${question} Context provided: ${context.join("\n")} AI Response: ${answer} Rate the response on these criteria (0.0 to 1.0): 1. Relevance: Does it answer the question? 2. Accuracy: Is it factually correct based on context? 3. Completeness: Does it fully address the question? Respond in JSON: {"relevance": 0.X, "accuracy": 0.X, "completeness": 0.X} `; // Create evaluation trace linked to original const evalTrace = langfuse.trace({ name: "llm-evaluation", metadata: { evaluatedTraceId: traceId }, tags: ["evaluation", "automated"], }); const generation = evalTrace.generation({ name: "judge-response", model: "gpt-4", input: evaluationPrompt, }); const response = await openai.chat.completions.create({ model: "gpt-4", messages: [{ role: "user", content: evaluationPrompt }], response_format: { type: "json_object" }, }); const scores = JSON.parse(response.choices[0].message.content!); generation.end({ output: scores, usage: { promptTokens: response.usage?.prompt_tokens || 0, completionTokens: response.usage?.completion_tokens || 0, }, }); // Apply scores to original trace for (const [name, value] of Object.entries(scores)) { await langfuse.score({ traceId, name: `llm-judge/${name}`, value: value as number, comment: "Automated LLM evaluation", }); } return scores; } ``` ### Step 4: Score Specific Generations ```typescript async function scoreGeneration( traceId: string, observationId: string, // Generation ID scores: Record ) { for (const [name, value] of Object.entries(scores)) { await langfuse.score({ traceId, observationId, // Links score to specific generation name, value, }); } } // Usage const trace = langfuse.trace({ name: "multi-step" }); const gen1 = trace.generation({ name: "step-1", model: "gpt-4" }); // ... LLM call ... gen1.end({ output: result1 }); const gen2 = trace.generation({ name: "step-2", model: "gpt-4" }); // ... LLM call ... gen2.end({ output: result2 }); // Score each generation separately await scoreGeneration(trace.id, gen1.id, { quality: 0.9 }); await scoreGeneration(trace.id, gen2.id, { quality: 0.7 }); ``` ### Step 5: Dataset-Based Evaluation ```typescript // Create evaluation dataset in Langfuse async function runDatasetEvaluation(datasetName: string) { // Fetch dataset from Langfuse const dataset = await langfuse.getDataset(datasetName); const results = []; for (const item of dataset.items) { // Run your pipeline const trace = langfuse.trace({ name: "dataset-eval", metadata: { datasetItemId: item.id }, }); const output = await runPipeline(item.input); trace.update({ output }); // Compare to expected output const score = compareOutputs(output, item.expectedOutput); await langfuse.score({ traceId: trace.id, name: "dataset-match", value: score, }); // Link trace to dataset item await langfuse.datasetItem.link({ datasetItemId: item.id, traceId: trace.id, }); results.push({ input: item.input, output, score }); } return results; } ``` ## Output - Manual scoring for human evaluation - User feedback capture (thumbs up/down) - Automated LLM-as-judge evaluation - Generation-level scoring - Dataset-based evaluation runs ## Error Handling | Issue | Cause | Solution | |-------|-------|----------| | Score not appearing | Wrong traceId | Verify trace ID exists | | Invalid score value | Out of range | Use 0.0-1.0 or define range | | Feedback delayed | Not flushed | Call `flushAsync()` if needed | | Eval trace missing | Not linked | Use metadata to link traces | ## Examples ### RAGAS Integration (Python) ```python from langfuse import Langfuse from ragas import evaluate from ragas.metrics import faithfulness, answer_relevancy langfuse = Langfuse() async def ragas_evaluation(trace_id: str, question: str, answer: str, contexts: list): # Run RAGAS evaluation result = evaluate( questions=[question], answers=[answer], contexts=[contexts], metrics=[faithfulness, answer_relevancy], ) # Send scores to Langfuse for metric_name, score in result.items(): langfuse.score( trace_id=trace_id, name=f"ragas/{metric_name}", value=score, comment="RAGAS automated evaluation", ) return result ``` ### Evaluation Dashboard Query ```typescript // Fetch traces with scores for analysis const traces = await langfuse.fetchTraces({ name: "chat", fromTimestamp: new Date(Date.now() - 7 * 24 * 60 * 60 * 1000), toTimestamp: new Date(), }); // Calculate average scores const scoresByName: Record = {}; for (const trace of traces.data) { for (const score of trace.scores || []) { if (!scoresByName[score.name]) scoresByName[score.name] = []; scoresByName[score.name].push(score.value); } } const averages = Object.fromEntries( Object.entries(scoresByName).map(([name, values]) => [ name, values.reduce((a, b) => a + b, 0) / values.length, ]) ); console.log("Average scores:", averages); ``` ## Resources - [Langfuse Scores](https://langfuse.com/docs/scores) - [Langfuse Datasets](https://langfuse.com/docs/datasets) - [RAGAS Integration](https://langfuse.com/docs/scores/model-based-evals/ragas) - [Evaluation Best Practices](https://langfuse.com/docs/scores/overview) ## Next Steps For debugging issues, see `langfuse-common-errors`.

Skill file: plugins/saas-packs/langfuse-pack/skills/langfuse-core-workflow-b/SKILL.md