๐Ÿ“… let's chat! explore the endless possibilities creating industries that don't exist. click here

langfuse-hello-world

Create a minimal working Langfuse trace example. Use when starting a new Langfuse integration, testing your setup, or learning basic Langfuse tracing patterns. Trigger with phrases like "langfuse hello world", "langfuse example", "langfuse quick start", "first langfuse trace", "simple langfuse code". allowed-tools: Read, Write, Edit version: 1.0.0 license: MIT author: Jeremy Longshore <jeremy@intentsolutions.io>

Allowed Tools

No tools specified

Provided by Plugin

langfuse-pack

Claude Code skill pack for Langfuse LLM observability (24 skills)

saas packs v1.0.0
View Plugin

Installation

This skill is included in the langfuse-pack plugin:

/plugin install langfuse-pack@claude-code-plugins-plus

Click to copy

Instructions

# Langfuse Hello World ## Overview Minimal working example demonstrating core Langfuse tracing functionality. ## Prerequisites - Completed `langfuse-install-auth` setup - Valid API credentials configured - Development environment ready ## Instructions ### Step 1: Create Entry File Create a new file for your hello world trace. ### Step 2: Import and Initialize Client ```typescript import { Langfuse } from "langfuse"; const langfuse = new Langfuse({ publicKey: process.env.LANGFUSE_PUBLIC_KEY!, secretKey: process.env.LANGFUSE_SECRET_KEY!, baseUrl: process.env.LANGFUSE_HOST, }); ``` ### Step 3: Create Your First Trace ```typescript async function helloLangfuse() { // Create a trace (top-level operation) const trace = langfuse.trace({ name: "hello-world", userId: "demo-user", metadata: { source: "hello-world-example" }, tags: ["demo", "getting-started"], }); // Add a span (child operation) const span = trace.span({ name: "process-input", input: { message: "Hello, Langfuse!" }, }); // Simulate some processing await new Promise((resolve) => setTimeout(resolve, 100)); // End the span with output span.end({ output: { result: "Processed successfully!" }, }); // Add a generation (LLM call tracking) trace.generation({ name: "llm-response", model: "gpt-4", input: [{ role: "user", content: "Say hello" }], output: { content: "Hello! How can I help you today?" }, usage: { promptTokens: 5, completionTokens: 10, totalTokens: 15, }, }); // Flush to ensure data is sent await langfuse.flushAsync(); console.log("Trace created! View at:", trace.getTraceUrl()); } helloLangfuse().catch(console.error); ``` ## Output - Working code file with Langfuse client initialization - A trace visible in Langfuse dashboard containing: - One span with input/output - One generation with mock LLM data - Console output showing: ``` Trace created! View at: https://cloud.langfuse.com/trace/abc123... ``` ## Error Handling | Error | Cause | Solution | |-------|-------|----------| | Import Error | SDK not installed | Verify with `npm list langfuse` | | Auth Error | Invalid credentials | Check environment variables are set | | Trace not appearing | Data not flushed | Ensure `flushAsync()` is called | | Network Error | Host unreachable | Verify LANGFUSE_HOST URL | ## Examples ### TypeScript Complete Example ```typescript import { Langfuse } from "langfuse"; const langfuse = new Langfuse(); async function main() { // Create trace const trace = langfuse.trace({ name: "hello-world", input: { query: "What is Langfuse?" }, }); // Simulate LLM call const generation = trace.generation({ name: "answer-query", model: "gpt-4", modelParameters: { temperature: 0.7 }, input: [ { role: "system", content: "You are a helpful assistant." }, { role: "user", content: "What is Langfuse?" }, ], }); // Simulate response await new Promise((r) => setTimeout(r, 500)); // End generation with output generation.end({ output: "Langfuse is an open-source LLM observability platform...", usage: { promptTokens: 25, completionTokens: 50 }, }); // Update trace with final output trace.update({ output: { answer: "Langfuse is an LLM observability platform." }, }); // Flush and get URL await langfuse.flushAsync(); console.log("View trace:", trace.getTraceUrl()); } main(); ``` ### Python Complete Example ```python from langfuse import Langfuse import time langfuse = Langfuse() def main(): # Create trace trace = langfuse.trace( name="hello-world", input={"query": "What is Langfuse?"}, user_id="demo-user", ) # Add a span for processing span = trace.span( name="process-query", input={"query": "What is Langfuse?"}, ) # Simulate processing time.sleep(0.1) span.end(output={"processed": True}) # Add LLM generation generation = trace.generation( name="answer-query", model="gpt-4", model_parameters={"temperature": 0.7}, input=[ {"role": "system", "content": "You are a helpful assistant."}, {"role": "user", "content": "What is Langfuse?"}, ], ) # Simulate LLM response time.sleep(0.5) generation.end( output="Langfuse is an open-source LLM observability platform...", usage={"prompt_tokens": 25, "completion_tokens": 50}, ) # Update trace with final output trace.update( output={"answer": "Langfuse is an LLM observability platform."} ) # Flush data langfuse.flush() print(f"View trace: {trace.get_trace_url()}") if __name__ == "__main__": main() ``` ### With Decorators (Python) ```python from langfuse.decorators import observe, langfuse_context @observe() def process_query(query: str) -> str: # This function is automatically traced return f"Processed: {query}" @observe(as_type="generation") def generate_response(messages: list) -> str: # This is tracked as an LLM generation langfuse_context.update_current_observation( model="gpt-4", usage={"prompt_tokens": 10, "completion_tokens": 20}, ) return "Hello from Langfuse!" @observe() def main(): result = process_query("Hello!") response = generate_response([{"role": "user", "content": "Hi"}]) return response main() ``` ## Resources - [Langfuse Tracing Concepts](https://langfuse.com/docs/tracing) - [Langfuse SDK Reference](https://langfuse.com/docs/sdk) - [Langfuse Examples](https://langfuse.com/docs/get-started) ## Next Steps Proceed to `langfuse-local-dev-loop` for development workflow setup.

Skill file: plugins/saas-packs/langfuse-pack/skills/langfuse-hello-world/SKILL.md