๐Ÿ“… let's chat! explore the endless possibilities creating industries that don't exist. click here

langfuse-performance-tuning

Optimize Langfuse tracing performance for high-throughput applications. Use when experiencing latency issues, optimizing trace overhead, or scaling Langfuse for production workloads. Trigger with phrases like "langfuse performance", "optimize langfuse", "langfuse latency", "langfuse overhead", "langfuse slow". allowed-tools: Read, Write, Edit version: 1.0.0 license: MIT author: Jeremy Longshore <jeremy@intentsolutions.io>

Allowed Tools

No tools specified

Provided by Plugin

langfuse-pack

Claude Code skill pack for Langfuse LLM observability (24 skills)

saas packs v1.0.0
View Plugin

Installation

This skill is included in the langfuse-pack plugin:

/plugin install langfuse-pack@claude-code-plugins-plus

Click to copy

Instructions

# Langfuse Performance Tuning ## Overview Optimize Langfuse tracing for minimal overhead and maximum throughput. ## Prerequisites - Existing Langfuse integration - Performance baseline measurements - Understanding of async patterns ## Performance Targets | Metric | Target | Critical | |--------|--------|----------| | Trace creation overhead | < 1ms | < 5ms | | Flush latency | < 100ms | < 500ms | | Memory per trace | < 1KB | < 5KB | | CPU overhead | < 1% | < 5% | ## Instructions ### Step 1: Measure Baseline Performance ```typescript // scripts/benchmark-langfuse.ts import { Langfuse } from "langfuse"; import { performance } from "perf_hooks"; async function benchmark() { const langfuse = new Langfuse(); const iterations = 1000; // Measure trace creation const traceTimings: number[] = []; for (let i = 0; i < iterations; i++) { const start = performance.now(); const trace = langfuse.trace({ name: `benchmark-${i}` }); traceTimings.push(performance.now() - start); } // Measure generation creation const genTimings: number[] = []; const trace = langfuse.trace({ name: "gen-benchmark" }); for (let i = 0; i < iterations; i++) { const start = performance.now(); const gen = trace.generation({ name: `gen-${i}`, model: "gpt-4", input: [{ role: "user", content: "test" }], }); gen.end({ output: "response" }); genTimings.push(performance.now() - start); } // Measure flush const flushStart = performance.now(); await langfuse.flushAsync(); const flushTime = performance.now() - flushStart; // Calculate stats const stats = (arr: number[]) => ({ mean: arr.reduce((a, b) => a + b) / arr.length, p50: arr.sort((a, b) => a - b)[Math.floor(arr.length * 0.5)], p95: arr.sort((a, b) => a - b)[Math.floor(arr.length * 0.95)], p99: arr.sort((a, b) => a - b)[Math.floor(arr.length * 0.99)], }); console.log("=== Langfuse Performance Benchmark ==="); console.log(`\nTrace Creation (${iterations} iterations):`); console.log(JSON.stringify(stats(traceTimings), null, 2)); console.log(`\nGeneration Creation (${iterations} iterations):`); console.log(JSON.stringify(stats(genTimings), null, 2)); console.log(`\nFlush Time: ${flushTime.toFixed(2)}ms`); await langfuse.shutdownAsync(); } benchmark(); ``` ### Step 2: Optimize Batching Configuration ```typescript // High-throughput configuration const langfuse = new Langfuse({ publicKey: process.env.LANGFUSE_PUBLIC_KEY!, secretKey: process.env.LANGFUSE_SECRET_KEY!, // Batching optimization flushAt: 100, // Larger batches = fewer requests flushInterval: 10000, // Less frequent flushes // Timeout tuning requestTimeout: 30000, // Allow time for large batches // Optional: Disable in development enabled: process.env.NODE_ENV === "production", }); ``` ### Step 3: Implement Non-Blocking Tracing ```typescript // Trace wrapper that never blocks the main operation class NonBlockingLangfuse { private langfuse: Langfuse; private errorCount = 0; private maxErrors = 10; constructor(config: ConstructorParameters[0]) { this.langfuse = new Langfuse(config); } // Fire-and-forget trace trace(params: Parameters[0]) { if (this.errorCount >= this.maxErrors) { // Circuit breaker: stop tracing if too many errors return this.createNoOpTrace(); } try { return this.langfuse.trace(params); } catch (error) { this.errorCount++; console.error("Langfuse trace error:", error); return this.createNoOpTrace(); } } private createNoOpTrace() { return { id: "noop", span: () => this.createNoOpSpan(), generation: () => this.createNoOpGeneration(), update: () => {}, getTraceUrl: () => "", }; } private createNoOpSpan() { return { id: "noop", span: () => this.createNoOpSpan(), generation: () => this.createNoOpGeneration(), end: () => {}, }; } private createNoOpGeneration() { return { id: "noop", end: () => {}, }; } // Background flush - don't await in hot path flush() { this.langfuse.flushAsync().catch((error) => { this.errorCount++; console.error("Langfuse flush error:", error); }); } async shutdown() { return this.langfuse.shutdownAsync(); } } ``` ### Step 4: Optimize Data Payload Size ```typescript // Reduce trace payload size function optimizeTraceInput(input: any): any { // Truncate large strings const MAX_STRING_LENGTH = 10000; if (typeof input === "string") { return input.length > MAX_STRING_LENGTH ? input.slice(0, MAX_STRING_LENGTH) + "...[truncated]" : input; } if (Array.isArray(input)) { // Limit array size const MAX_ARRAY_LENGTH = 100; const truncated = input.slice(0, MAX_ARRAY_LENGTH); return truncated.map(optimizeTraceInput); } if (typeof input === "object" && input !== null) { // Remove large binary data const optimized: Record = {}; for (const [key, value] of Object.entries(input)) { if (value instanceof Buffer || value instanceof Uint8Array) { optimized[key] = `[Binary: ${value.length} bytes]`; } else { optimized[key] = optimizeTraceInput(value); } } return optimized; } return input; } // Use in traces const trace = langfuse.trace({ name: "optimized-trace", input: optimizeTraceInput(largeInput), }); ``` ### Step 5: Implement Sampling for Ultra-High Volume ```typescript interface SamplingStrategy { shouldSample(params: TraceParams): boolean; } // Deterministic sampling based on trace attributes class DeterministicSampler implements SamplingStrategy { private rate: number; constructor(rate: number) { this.rate = rate; } shouldSample(params: TraceParams): boolean { // Always sample errors if (params.level === "ERROR" || params.tags?.includes("error")) { return true; } // Deterministic hash-based sampling const hash = this.hashString(params.name + (params.userId || "")); return (hash % 100) < (this.rate * 100); } private hashString(str: string): number { let hash = 0; for (let i = 0; i < str.length; i++) { const char = str.charCodeAt(i); hash = ((hash << 5) - hash) + char; hash = hash & hash; } return Math.abs(hash); } } // Adaptive sampling based on throughput class AdaptiveSampler implements SamplingStrategy { private windowMs = 60000; private maxPerWindow = 1000; private counts: number[] = []; shouldSample(params: TraceParams): boolean { const now = Date.now(); const windowStart = now - this.windowMs; // Clean old counts this.counts = this.counts.filter((t) => t > windowStart); // Check if under limit if (this.counts.length < this.maxPerWindow) { this.counts.push(now); return true; } // Over limit - only sample important traces return params.level === "ERROR"; } } // Apply sampling const sampler = new DeterministicSampler(0.1); // 10% sampling function sampledTrace(params: TraceParams) { if (!sampler.shouldSample(params)) { return createNoOpTrace(); } return langfuse.trace({ ...params, metadata: { ...params.metadata, sampled: true, }, }); } ``` ### Step 6: Memory Management ```typescript // Prevent memory leaks with trace cleanup class ManagedLangfuse { private langfuse: Langfuse; private activeTraces: Map = new Map(); private maxTraceAge = 300000; // 5 minutes constructor(config: ConstructorParameters[0]) { this.langfuse = new Langfuse(config); // Periodic cleanup setInterval(() => this.cleanupStaleTraces(), 60000); } trace(params: Parameters[0]) { const trace = this.langfuse.trace(params); this.activeTraces.set(trace.id, { createdAt: new Date() }); return trace; } private cleanupStaleTraces() { const now = Date.now(); let cleaned = 0; for (const [id, meta] of this.activeTraces) { if (now - meta.createdAt.getTime() > this.maxTraceAge) { this.activeTraces.delete(id); cleaned++; } } if (cleaned > 0) { console.log(`Cleaned up ${cleaned} stale trace references`); } } getStats() { return { activeTraces: this.activeTraces.size, heapUsed: process.memoryUsage().heapUsed / 1024 / 1024, }; } } ``` ## Output - Baseline performance measurements - Optimized batching configuration - Non-blocking trace wrapper - Payload size optimization - Sampling strategies for high volume - Memory leak prevention ## Performance Optimization Checklist | Optimization | Impact | Effort | |--------------|--------|--------| | Increase `flushAt` | High | Low | | Non-blocking traces | High | Medium | | Payload truncation | Medium | Low | | Sampling | High | Medium | | Memory management | Medium | Medium | ## Error Handling | Issue | Cause | Solution | |-------|-------|----------| | High latency | Small batch size | Increase `flushAt` | | Memory growth | No cleanup | Add trace cleanup | | Request timeouts | Large payloads | Truncate inputs | | High CPU | Sync operations | Use async patterns | ## Resources - [Langfuse SDK Configuration](https://langfuse.com/docs/sdk) - [Node.js Performance](https://nodejs.org/en/docs/guides/dont-block-the-event-loop) - [Sampling Strategies](https://opentelemetry.io/docs/concepts/sampling/) ## Next Steps For cost optimization, see `langfuse-cost-tuning`.

Skill file: plugins/saas-packs/langfuse-pack/skills/langfuse-performance-tuning/SKILL.md