lindy-observability
Implement observability for Lindy AI integrations. Use when setting up monitoring, logging, tracing, or building dashboards for Lindy operations. Trigger with phrases like "lindy monitoring", "lindy observability", "lindy metrics", "lindy logging", "lindy tracing". allowed-tools: Read, Write, Edit version: 1.0.0 license: MIT author: Jeremy Longshore <jeremy@intentsolutions.io>
Allowed Tools
No tools specified
Provided by Plugin
lindy-pack
Claude Code skill pack for Lindy AI (24 skills)
Installation
This skill is included in the lindy-pack plugin:
/plugin install lindy-pack@claude-code-plugins-plus
Click to copy
Instructions
# Lindy Observability
## Overview
Implement comprehensive observability for Lindy AI integrations.
## Prerequisites
- Production Lindy integration
- Observability stack (Datadog, New Relic, Prometheus, etc.)
- Log aggregation system
## Instructions
### Step 1: Structured Logging
```typescript
// lib/logger.ts
import pino from 'pino';
export const logger = pino({
level: process.env.LOG_LEVEL || 'info',
formatters: {
level: (label) => ({ level: label }),
},
base: {
service: 'lindy-integration',
environment: process.env.NODE_ENV,
},
});
// Lindy-specific logger
export function lindyLogger(operation: string) {
return logger.child({ component: 'lindy', operation });
}
```
### Step 2: Instrumented Client
```typescript
// lib/instrumented-lindy.ts
import { Lindy } from '@lindy-ai/sdk';
import { lindyLogger } from './logger';
import { metrics } from './metrics';
import { tracer } from './tracer';
export class InstrumentedLindy {
private lindy: Lindy;
constructor() {
this.lindy = new Lindy({ apiKey: process.env.LINDY_API_KEY });
}
async runAgent(agentId: string, input: string) {
const log = lindyLogger('runAgent');
const span = tracer.startSpan('lindy.agent.run');
const startTime = Date.now();
try {
span.setAttributes({
'lindy.agent_id': agentId,
'lindy.input_length': input.length,
});
log.info({ agentId, inputLength: input.length }, 'Starting agent run');
const result = await this.lindy.agents.run(agentId, { input });
const duration = Date.now() - startTime;
// Record metrics
metrics.histogram('lindy.agent.duration', duration, { agentId });
metrics.counter('lindy.agent.success', 1, { agentId });
// Log success
log.info({
agentId,
duration,
outputLength: result.output.length,
}, 'Agent run completed');
span.setAttributes({
'lindy.duration_ms': duration,
'lindy.output_length': result.output.length,
'lindy.status': 'success',
});
return result;
} catch (error: any) {
const duration = Date.now() - startTime;
// Record error metrics
metrics.counter('lindy.agent.error', 1, {
agentId,
errorCode: error.code,
});
// Log error
log.error({
agentId,
duration,
error: error.message,
errorCode: error.code,
}, 'Agent run failed');
span.setAttributes({
'lindy.status': 'error',
'lindy.error': error.message,
});
span.recordException(error);
throw error;
} finally {
span.end();
}
}
}
```
### Step 3: Metrics Collection
```typescript
// lib/metrics.ts
import { Counter, Histogram, Registry } from 'prom-client';
const registry = new Registry();
export const metrics = {
agentDuration: new Histogram({
name: 'lindy_agent_duration_ms',
help: 'Duration of Lindy agent runs in milliseconds',
labelNames: ['agent_id', 'status'],
buckets: [100, 500, 1000, 2000, 5000, 10000, 30000],
registers: [registry],
}),
agentRuns: new Counter({
name: 'lindy_agent_runs_total',
help: 'Total number of Lindy agent runs',
labelNames: ['agent_id', 'status'],
registers: [registry],
}),
apiCalls: new Counter({
name: 'lindy_api_calls_total',
help: 'Total Lindy API calls',
labelNames: ['endpoint', 'status'],
registers: [registry],
}),
// Helper methods
histogram(name: string, value: number, labels: Record) {
const metric = registry.getSingleMetric(name) as Histogram;
metric?.observe(labels, value);
},
counter(name: string, value: number, labels: Record) {
const metric = registry.getSingleMetric(name) as Counter;
metric?.inc(labels, value);
},
};
// Metrics endpoint
export function getMetrics(): Promise {
return registry.metrics();
}
```
### Step 4: Distributed Tracing
```typescript
// lib/tracer.ts
import { trace, SpanStatusCode } from '@opentelemetry/api';
import { NodeTracerProvider } from '@opentelemetry/sdk-trace-node';
import { SimpleSpanProcessor } from '@opentelemetry/sdk-trace-base';
import { OTLPTraceExporter } from '@opentelemetry/exporter-trace-otlp-http';
const provider = new NodeTracerProvider();
provider.addSpanProcessor(
new SimpleSpanProcessor(
new OTLPTraceExporter({
url: process.env.OTEL_EXPORTER_OTLP_ENDPOINT,
})
)
);
provider.register();
export const tracer = trace.getTracer('lindy-integration');
```
### Step 5: Dashboard Configuration
```yaml
# grafana/dashboards/lindy.json
{
"title": "Lindy AI Monitoring",
"panels": [
{
"title": "Agent Runs per Minute",
"type": "graph",
"targets": [
{
"expr": "rate(lindy_agent_runs_total[1m])",
"legendFormat": "{{agent_id}}"
}
]
},
{
"title": "P95 Latency",
"type": "stat",
"targets": [
{
"expr": "histogram_quantile(0.95, rate(lindy_agent_duration_ms_bucket[5m]))"
}
]
},
{
"title": "Error Rate",
"type": "graph",
"targets": [
{
"expr": "rate(lindy_agent_runs_total{status='error'}[5m]) / rate(lindy_agent_runs_total[5m])"
}
]
}
]
}
```
## Output
- Structured logging
- Prometheus metrics
- Distributed tracing
- Grafana dashboards
- Alerting rules
## Error Handling
| Issue | Cause | Solution |
|-------|-------|----------|
| Missing traces | OTEL not configured | Set OTEL endpoint |
| Metrics not visible | Wrong labels | Check label names |
| Logs not searchable | Missing context | Add structured fields |
## Examples
### Alert Configuration
```yaml
# alerts/lindy.yml
groups:
- name: lindy
rules:
- alert: LindyHighErrorRate
expr: rate(lindy_agent_runs_total{status="error"}[5m]) > 0.1
for: 5m
labels:
severity: critical
annotations:
summary: "High Lindy error rate"
- alert: LindyHighLatency
expr: histogram_quantile(0.95, rate(lindy_agent_duration_ms_bucket[5m])) > 10000
for: 5m
labels:
severity: warning
annotations:
summary: "Lindy P95 latency above 10s"
```
## Resources
- [OpenTelemetry](https://opentelemetry.io/)
- [Prometheus](https://prometheus.io/)
- [Grafana](https://grafana.com/)
## Next Steps
Proceed to `lindy-incident-runbook` for incident response.