linear-observability

Implement monitoring, logging, and alerting for Linear integrations. Use when setting up metrics collection, creating dashboards, or configuring alerts for Linear API usage. Trigger with phrases like "linear monitoring", "linear observability", "linear metrics", "linear logging", "monitor linear integration". allowed-tools: Read, Write, Edit, Grep version: 1.0.0 license: MIT author: Jeremy Longshore <jeremy@intentsolutions.io>

Allowed Tools

No tools specified

Provided by Plugin

linear-pack

Claude Code skill pack for Linear (24 skills)

saas packs v1.0.0
View Plugin

Installation

This skill is included in the linear-pack plugin:

/plugin install linear-pack@claude-code-plugins-plus

Click to copy

Instructions

# Linear Observability ## Overview Comprehensive monitoring, logging, and alerting for Linear integrations. ## Prerequisites - Linear integration deployed - Metrics infrastructure (Prometheus, Datadog, etc.) - Logging infrastructure (ELK, CloudWatch, etc.) - Alerting system configured ## Instructions ### Step 1: Metrics Collection ```typescript // lib/metrics.ts import { Counter, Histogram, Gauge, Registry } from "prom-client"; const registry = new Registry(); // Request metrics export const linearRequestsTotal = new Counter({ name: "linear_api_requests_total", help: "Total Linear API requests", labelNames: ["operation", "status"], registers: [registry], }); export const linearRequestDuration = new Histogram({ name: "linear_api_request_duration_seconds", help: "Linear API request duration in seconds", labelNames: ["operation"], buckets: [0.1, 0.25, 0.5, 1, 2.5, 5, 10], registers: [registry], }); export const linearComplexityCost = new Histogram({ name: "linear_api_complexity_cost", help: "Linear API query complexity cost", labelNames: ["operation"], buckets: [10, 50, 100, 250, 500, 1000, 2500], registers: [registry], }); // Rate limit metrics export const linearRateLimitRemaining = new Gauge({ name: "linear_rate_limit_remaining", help: "Remaining Linear API rate limit", registers: [registry], }); export const linearComplexityRemaining = new Gauge({ name: "linear_complexity_remaining", help: "Remaining Linear complexity quota", registers: [registry], }); // Webhook metrics export const linearWebhooksReceived = new Counter({ name: "linear_webhooks_received_total", help: "Total Linear webhooks received", labelNames: ["type", "action"], registers: [registry], }); export const linearWebhookProcessingDuration = new Histogram({ name: "linear_webhook_processing_duration_seconds", help: "Linear webhook processing duration", labelNames: ["type"], buckets: [0.01, 0.05, 0.1, 0.25, 0.5, 1, 2.5], registers: [registry], }); // Cache metrics export const linearCacheHits = new Counter({ name: "linear_cache_hits_total", help: "Total Linear cache hits", registers: [registry], }); export const linearCacheMisses = new Counter({ name: "linear_cache_misses_total", help: "Total Linear cache misses", registers: [registry], }); export { registry }; ``` ### Step 2: Instrumented Client Wrapper ```typescript // lib/instrumented-client.ts import { LinearClient } from "@linear/sdk"; import { linearRequestsTotal, linearRequestDuration, linearRateLimitRemaining, linearComplexityRemaining, } from "./metrics"; export function createInstrumentedClient(apiKey: string): LinearClient { const client = new LinearClient({ apiKey, fetch: async (url, init) => { const operation = extractOperationName(init?.body); const timer = linearRequestDuration.startTimer({ operation }); try { const response = await fetch(url, init); // Record rate limit headers const remaining = response.headers.get("x-ratelimit-remaining"); const complexity = response.headers.get("x-complexity-remaining"); if (remaining) linearRateLimitRemaining.set(parseInt(remaining)); if (complexity) linearComplexityRemaining.set(parseInt(complexity)); // Record success/failure const status = response.ok ? "success" : "error"; linearRequestsTotal.inc({ operation, status }); timer(); return response; } catch (error) { linearRequestsTotal.inc({ operation, status: "error" }); timer(); throw error; } }, }); return client; } function extractOperationName(body: BodyInit | undefined): string { if (!body || typeof body !== "string") return "unknown"; try { const parsed = JSON.parse(body); // Extract operation name from GraphQL query const match = parsed.query?.match(/(?:query|mutation)\s+(\w+)/); return match?.[1] || "anonymous"; } catch { return "unknown"; } } ``` ### Step 3: Structured Logging ```typescript // lib/logger.ts import pino from "pino"; export const logger = pino({ level: process.env.LOG_LEVEL || "info", formatters: { level: (label) => ({ level: label }), }, base: { service: "linear-integration", environment: process.env.NODE_ENV, }, }); // Linear-specific logger export const linearLogger = logger.child({ component: "linear" }); // Log API calls export function logApiCall(operation: string, duration: number, success: boolean) { linearLogger.info({ event: "api_call", operation, duration_ms: duration, success, }); } // Log webhook events export function logWebhook(type: string, action: string, id: string) { linearLogger.info({ event: "webhook_received", webhook_type: type, webhook_action: action, entity_id: id, }); } // Log errors with context export function logError(error: Error, context: Record) { linearLogger.error({ event: "error", error_message: error.message, error_stack: error.stack, ...context, }); } ``` ### Step 4: Health Check Endpoint ```typescript // api/health.ts import { LinearClient } from "@linear/sdk"; import { registry } from "../lib/metrics"; interface HealthStatus { status: "healthy" | "degraded" | "unhealthy"; checks: { linear_api: { status: string; latency_ms?: number; error?: string }; cache: { status: string; hit_rate?: number }; rate_limit: { status: string; remaining?: number; percentage?: number }; }; timestamp: string; } export async function healthCheck(client: LinearClient): Promise { const checks: HealthStatus["checks"] = { linear_api: { status: "unknown" }, cache: { status: "unknown" }, rate_limit: { status: "unknown" }, }; // Check Linear API const start = Date.now(); try { await client.viewer; checks.linear_api = { status: "healthy", latency_ms: Date.now() - start, }; } catch (error) { checks.linear_api = { status: "unhealthy", error: error instanceof Error ? error.message : "Unknown error", }; } // Check rate limit status const metrics = await registry.getMetricsAsJSON(); const rateLimitMetric = metrics.find(m => m.name === "linear_rate_limit_remaining"); if (rateLimitMetric) { const remaining = (rateLimitMetric as any).values?.[0]?.value || 0; const percentage = (remaining / 1500) * 100; checks.rate_limit = { status: percentage > 10 ? "healthy" : percentage > 5 ? "degraded" : "unhealthy", remaining, percentage: Math.round(percentage), }; } // Determine overall status const statuses = Object.values(checks).map(c => c.status); let status: HealthStatus["status"] = "healthy"; if (statuses.includes("unhealthy")) status = "unhealthy"; else if (statuses.includes("degraded")) status = "degraded"; return { status, checks, timestamp: new Date().toISOString(), }; } ``` ### Step 5: Alerting Rules ```yaml # prometheus/alerts.yml groups: - name: linear-integration rules: # High error rate - alert: LinearHighErrorRate expr: | sum(rate(linear_api_requests_total{status="error"}[5m])) / sum(rate(linear_api_requests_total[5m])) > 0.05 for: 5m labels: severity: warning annotations: summary: High Linear API error rate description: "Linear API error rate is {{ $value | humanizePercentage }}" # Rate limit approaching - alert: LinearRateLimitLow expr: linear_rate_limit_remaining < 100 for: 2m labels: severity: warning annotations: summary: Linear rate limit running low description: "Only {{ $value }} requests remaining in rate limit window" # Slow API responses - alert: LinearSlowResponses expr: | histogram_quantile(0.95, rate(linear_api_request_duration_seconds_bucket[5m])) > 2 for: 5m labels: severity: warning annotations: summary: Slow Linear API responses description: "95th percentile response time is {{ $value }}s" # Webhook processing errors - alert: LinearWebhookErrors expr: | sum(rate(linear_webhooks_received_total{status="error"}[5m])) > 0.1 for: 5m labels: severity: critical annotations: summary: Linear webhook processing errors description: "Webhook error rate: {{ $value }} per second" ``` ### Step 6: Grafana Dashboard ```json { "dashboard": { "title": "Linear Integration", "panels": [ { "title": "API Request Rate", "type": "graph", "targets": [ { "expr": "sum(rate(linear_api_requests_total[5m])) by (status)", "legendFormat": "{{ status }}" } ] }, { "title": "Request Latency (p95)", "type": "gauge", "targets": [ { "expr": "histogram_quantile(0.95, rate(linear_api_request_duration_seconds_bucket[5m]))" } ] }, { "title": "Rate Limit Remaining", "type": "stat", "targets": [ { "expr": "linear_rate_limit_remaining" } ] }, { "title": "Webhooks by Type", "type": "piechart", "targets": [ { "expr": "sum(linear_webhooks_received_total) by (type)" } ] } ] } } ``` ## Error Handling | Error | Cause | Solution | |-------|-------|----------| | `Metrics not collecting` | Missing instrumentation | Add metrics to client wrapper | | `Alerts not firing` | Wrong threshold | Adjust alert thresholds | | `Missing labels` | Logger misconfigured | Check logger configuration | ## Resources - [Prometheus Client Library](https://github.com/siimon/prom-client) - [Grafana Dashboards](https://grafana.com/docs/grafana/latest/dashboards/) - [Pino Logger](https://getpino.io/) ## Next Steps Create incident runbooks with `linear-incident-runbook`.

Skill file: plugins/saas-packs/linear-pack/skills/linear-observability/SKILL.md