linear-rate-limits
Handle Linear API rate limiting and quotas effectively. Use when dealing with rate limit errors, implementing throttling, or optimizing API usage patterns. Trigger with phrases like "linear rate limit", "linear throttling", "linear API quota", "linear 429 error", "linear request limits". allowed-tools: Read, Write, Edit, Grep version: 1.0.0 license: MIT author: Jeremy Longshore <jeremy@intentsolutions.io>
Allowed Tools
No tools specified
Provided by Plugin
linear-pack
Claude Code skill pack for Linear (24 skills)
Installation
This skill is included in the linear-pack plugin:
/plugin install linear-pack@claude-code-plugins-plus
Click to copy
Instructions
# Linear Rate Limits
## Overview
Understand and handle Linear API rate limits for reliable integrations.
## Prerequisites
- Linear SDK configured
- Understanding of HTTP headers
- Familiarity with async patterns
## Linear Rate Limit Structure
### Current Limits
| Tier | Requests/min | Complexity/min | Notes |
|------|-------------|----------------|-------|
| Standard | 1,500 | 250,000 | Most integrations |
| Enterprise | Higher | Higher | Contact Linear |
### Headers Returned
```
X-RateLimit-Limit: 1500
X-RateLimit-Remaining: 1499
X-RateLimit-Reset: 1640000000
X-Complexity-Limit: 250000
X-Complexity-Cost: 50
X-Complexity-Remaining: 249950
```
## Instructions
### Step 1: Basic Rate Limit Handler
```typescript
// lib/rate-limiter.ts
interface RateLimitState {
remaining: number;
reset: Date;
complexityRemaining: number;
}
class LinearRateLimiter {
private state: RateLimitState = {
remaining: 1500,
reset: new Date(),
complexityRemaining: 250000,
};
updateFromHeaders(headers: Headers): void {
const remaining = headers.get("x-ratelimit-remaining");
const reset = headers.get("x-ratelimit-reset");
const complexityRemaining = headers.get("x-complexity-remaining");
if (remaining) this.state.remaining = parseInt(remaining);
if (reset) this.state.reset = new Date(parseInt(reset) * 1000);
if (complexityRemaining) {
this.state.complexityRemaining = parseInt(complexityRemaining);
}
}
async waitIfNeeded(): Promise {
// If very low on requests, wait until reset
if (this.state.remaining < 10) {
const waitMs = this.state.reset.getTime() - Date.now();
if (waitMs > 0) {
console.log(`Rate limit low, waiting ${waitMs}ms...`);
await new Promise(r => setTimeout(r, waitMs));
}
}
}
getState(): RateLimitState {
return { ...this.state };
}
}
export const rateLimiter = new LinearRateLimiter();
```
### Step 2: Exponential Backoff
```typescript
// lib/backoff.ts
interface BackoffOptions {
maxRetries?: number;
baseDelayMs?: number;
maxDelayMs?: number;
jitter?: boolean;
}
export async function withBackoff(
fn: () => Promise,
options: BackoffOptions = {}
): Promise {
const {
maxRetries = 5,
baseDelayMs = 1000,
maxDelayMs = 30000,
jitter = true,
} = options;
let lastError: Error | undefined;
for (let attempt = 0; attempt < maxRetries; attempt++) {
try {
return await fn();
} catch (error: any) {
lastError = error;
// Only retry on rate limit errors
const isRateLimited =
error?.extensions?.code === "RATE_LIMITED" ||
error?.response?.status === 429;
if (!isRateLimited || attempt === maxRetries - 1) {
throw error;
}
// Calculate delay with exponential backoff
let delay = Math.min(baseDelayMs * Math.pow(2, attempt), maxDelayMs);
// Add jitter to prevent thundering herd
if (jitter) {
delay += Math.random() * delay * 0.1;
}
// Check Retry-After header if available
const retryAfter = error?.response?.headers?.get?.("retry-after");
if (retryAfter) {
delay = Math.max(delay, parseInt(retryAfter) * 1000);
}
console.log(
`Rate limited, attempt ${attempt + 1}/${maxRetries}, ` +
`retrying in ${Math.round(delay)}ms...`
);
await new Promise(r => setTimeout(r, delay));
}
}
throw lastError;
}
```
### Step 3: Request Queue
```typescript
// lib/queue.ts
type QueuedRequest = {
fn: () => Promise;
resolve: (value: T) => void;
reject: (error: Error) => void;
};
class RequestQueue {
private queue: QueuedRequest[] = [];
private processing = false;
private requestsPerSecond = 20; // Conservative rate
async add(fn: () => Promise): Promise {
return new Promise((resolve, reject) => {
this.queue.push({ fn, resolve, reject });
this.process();
});
}
private async process(): Promise {
if (this.processing) return;
this.processing = true;
while (this.queue.length > 0) {
const request = this.queue.shift()!;
try {
const result = await request.fn();
request.resolve(result);
} catch (error) {
request.reject(error as Error);
}
// Throttle requests
await new Promise(r =>
setTimeout(r, 1000 / this.requestsPerSecond)
);
}
this.processing = false;
}
get pending(): number {
return this.queue.length;
}
}
export const requestQueue = new RequestQueue();
```
### Step 4: Batch Operations
```typescript
// lib/batch.ts
import { LinearClient } from "@linear/sdk";
interface BatchConfig {
batchSize: number;
delayBetweenBatches: number;
}
export async function batchProcess(
items: T[],
processor: (item: T) => Promise,
config: BatchConfig = { batchSize: 10, delayBetweenBatches: 1000 }
): Promise {
const results: R[] = [];
const batches: T[][] = [];
// Split into batches
for (let i = 0; i < items.length; i += config.batchSize) {
batches.push(items.slice(i, i + config.batchSize));
}
for (let i = 0; i < batches.length; i++) {
const batch = batches[i];
console.log(`Processing batch ${i + 1}/${batches.length}...`);
// Process batch in parallel
const batchResults = await Promise.all(batch.map(processor));
results.push(...batchResults);
// Delay between batches (except last)
if (i < batches.length - 1) {
await new Promise(r => setTimeout(r, config.delayBetweenBatches));
}
}
return results;
}
// Usage example
async function updateManyIssues(
client: LinearClient,
updates: { id: string; priority: number }[]
) {
return batchProcess(
updates,
({ id, priority }) => client.updateIssue(id, { priority }),
{ batchSize: 10, delayBetweenBatches: 2000 }
);
}
```
### Step 5: Query Optimization
```typescript
// Reduce complexity by limiting fields
const optimizedQuery = `
query Issues($filter: IssueFilter) {
issues(filter: $filter, first: 50) {
nodes {
id
identifier
title
# Avoid nested connections in loops
}
}
}
`;
// Use SDK efficiently
async function getIssuesOptimized(client: LinearClient, teamKey: string) {
// Good: Single query with filter
return client.issues({
filter: { team: { key: { eq: teamKey } } },
first: 50,
});
// Bad: N+1 queries
// const teams = await client.teams();
// for (const team of teams.nodes) {
// const issues = await team.issues(); // N queries!
// }
}
```
## Output
- Rate limit monitoring
- Automatic retry with backoff
- Request queuing and throttling
- Batch processing utilities
- Optimized query patterns
## Error Handling
| Error | Cause | Solution |
|-------|-------|----------|
| `429 Too Many Requests` | Rate limit exceeded | Use backoff and queue |
| `Complexity exceeded` | Query too expensive | Simplify query structure |
| `Timeout` | Long-running query | Paginate or split queries |
## Resources
- [Linear Rate Limiting](https://developers.linear.app/docs/graphql/rate-limiting)
- [GraphQL Complexity](https://developers.linear.app/docs/graphql/complexity)
- [Best Practices](https://developers.linear.app/docs/graphql/best-practices)
## Next Steps
Learn security best practices with `linear-security-basics`.