๐Ÿ“… let's chat! explore the endless possibilities creating industries that don't exist. click here

mistral-rate-limits

Implement Mistral AI rate limiting, backoff, and request management. Use when handling rate limit errors, implementing retry logic, or optimizing API request throughput for Mistral AI. Trigger with phrases like "mistral rate limit", "mistral throttling", "mistral 429", "mistral retry", "mistral backoff". allowed-tools: Read, Write, Edit version: 1.0.0 license: MIT author: Jeremy Longshore <jeremy@intentsolutions.io>

Allowed Tools

No tools specified

Provided by Plugin

mistral-pack

Claude Code skill pack for Mistral AI (24 skills)

saas packs v1.0.0
View Plugin

Installation

This skill is included in the mistral-pack plugin:

/plugin install mistral-pack@claude-code-plugins-plus

Click to copy

Instructions

# Mistral AI Rate Limits ## Overview Handle Mistral AI rate limits gracefully with exponential backoff and request management. ## Prerequisites - Mistral AI SDK installed - Understanding of async/await patterns - Access to rate limit headers ## Instructions ### Step 1: Understand Rate Limit Tiers | Tier | Requests/min | Tokens/min | Tokens/month | |------|-------------|------------|--------------| | Free | 2 | 500K | 1B | | Production | 120 | 1M | 10B | | Enterprise | Custom | Custom | Custom | **Note:** Limits vary by model and are subject to change. Check console.mistral.ai for current limits. ### Step 2: Implement Exponential Backoff with Jitter ```typescript interface RetryConfig { maxRetries: number; baseDelayMs: number; maxDelayMs: number; jitterMs: number; } async function withExponentialBackoff( operation: () => Promise, config: RetryConfig = { maxRetries: 5, baseDelayMs: 1000, maxDelayMs: 60000, jitterMs: 500 } ): Promise { for (let attempt = 0; attempt <= config.maxRetries; attempt++) { try { return await operation(); } catch (error: any) { if (attempt === config.maxRetries) throw error; const status = error.status; // Only retry on rate limits (429) or server errors (5xx) if (status !== 429 && (status < 500 || status >= 600)) throw error; // Check for Retry-After header const retryAfter = error.headers?.['retry-after']; let delay: number; if (retryAfter) { delay = parseInt(retryAfter) * 1000; } else { // Exponential delay with jitter to prevent thundering herd const exponentialDelay = config.baseDelayMs * Math.pow(2, attempt); const jitter = Math.random() * config.jitterMs; delay = Math.min(exponentialDelay + jitter, config.maxDelayMs); } console.log(`Attempt ${attempt + 1} failed (${status}). Retrying in ${delay.toFixed(0)}ms...`); await new Promise(r => setTimeout(r, delay)); } } throw new Error('Unreachable'); } // Usage const response = await withExponentialBackoff(() => client.chat.complete({ model: 'mistral-small-latest', messages: [{ role: 'user', content: 'Hello!' }], }) ); ``` ### Step 3: Token-Based Rate Limiting ```typescript class TokenRateLimiter { private tokensUsed = 0; private windowStart = Date.now(); private readonly tokensPerMinute: number; private readonly windowMs = 60000; // 1 minute constructor(tokensPerMinute = 500000) { this.tokensPerMinute = tokensPerMinute; } async waitForCapacity(estimatedTokens: number): Promise { const now = Date.now(); const elapsed = now - this.windowStart; // Reset window if needed if (elapsed >= this.windowMs) { this.tokensUsed = 0; this.windowStart = now; } // Check if we need to wait if (this.tokensUsed + estimatedTokens > this.tokensPerMinute) { const waitTime = this.windowMs - elapsed; console.log(`Token limit approaching. Waiting ${waitTime}ms...`); await new Promise(r => setTimeout(r, waitTime)); this.tokensUsed = 0; this.windowStart = Date.now(); } } recordUsage(tokensUsed: number): void { this.tokensUsed += tokensUsed; } } // Usage const rateLimiter = new TokenRateLimiter(500000); async function rateLimitedChat(messages: Message[]): Promise { // Estimate tokens (rough: 4 chars per token) const estimatedTokens = JSON.stringify(messages).length / 4; await rateLimiter.waitForCapacity(estimatedTokens + 500); // +500 for response const response = await client.chat.complete({ model: 'mistral-small-latest', messages, }); if (response.usage) { rateLimiter.recordUsage(response.usage.totalTokens || 0); } return response.choices?.[0]?.message?.content ?? ''; } ``` ### Step 4: Request Queue with Concurrency Control ```typescript import PQueue from 'p-queue'; const requestQueue = new PQueue({ concurrency: 5, // Max concurrent requests interval: 1000, // 1 second interval intervalCap: 10, // Max 10 requests per interval }); async function queuedRequest(operation: () => Promise): Promise { return requestQueue.add(async () => { return withExponentialBackoff(operation); }); } // Usage const results = await Promise.all( prompts.map(prompt => queuedRequest(() => client.chat.complete({ model: 'mistral-small-latest', messages: [{ role: 'user', content: prompt }], }) ) ) ); ``` ### Step 5: Rate Limit Monitor ```typescript class RateLimitMonitor { private requestCount = 0; private lastReset = Date.now(); private readonly alertThreshold: number; constructor(alertThreshold = 0.8) { this.alertThreshold = alertThreshold; } recordRequest(): void { const now = Date.now(); if (now - this.lastReset >= 60000) { this.requestCount = 0; this.lastReset = now; } this.requestCount++; } checkThreshold(maxRequests: number): void { if (this.requestCount / maxRequests > this.alertThreshold) { console.warn(`Rate limit warning: ${this.requestCount}/${maxRequests} requests used`); } } getStats(): { requestCount: number; windowRemaining: number } { return { requestCount: this.requestCount, windowRemaining: 60000 - (Date.now() - this.lastReset), }; } } ``` ## Output - Reliable API calls with automatic retry - Token-based rate limiting - Request queue with concurrency control - Rate limit monitoring ## Error Handling | Header | Description | Action | |--------|-------------|--------| | Retry-After | Seconds to wait | Honor this value | | X-RateLimit-Limit | Max requests | Monitor usage | | X-RateLimit-Remaining | Remaining requests | Throttle if low | | X-RateLimit-Reset | Reset timestamp | Wait until reset | ## Examples ### Python Rate Limiting ```python import time import asyncio from mistralai import Mistral async def with_retry(client, max_retries=3): for attempt in range(max_retries): try: return await client.chat.complete( model="mistral-small-latest", messages=[{"role": "user", "content": "Hello"}] ) except Exception as e: if hasattr(e, 'status') and e.status == 429: delay = (2 ** attempt) + (random.random() * 0.5) print(f"Rate limited. Waiting {delay:.1f}s...") await asyncio.sleep(delay) else: raise raise Exception("Max retries exceeded") ``` ### Batch Processing with Rate Limiting ```typescript async function processBatch( items: T[], processor: (item: T) => Promise, batchSize = 5, delayMs = 1000 ): Promise { const results: R[] = []; for (let i = 0; i < items.length; i += batchSize) { const batch = items.slice(i, i + batchSize); const batchResults = await Promise.all( batch.map(item => withExponentialBackoff(() => processor(item))) ); results.push(...batchResults); // Delay between batches if (i + batchSize < items.length) { await new Promise(r => setTimeout(r, delayMs)); } } return results; } ``` ## Resources - [Mistral AI Rate Limits](https://docs.mistral.ai/api/#rate-limits) - [Mistral AI Console](https://console.mistral.ai/) - [p-queue Documentation](https://github.com/sindresorhus/p-queue) ## Next Steps For security configuration, see `mistral-security-basics`.

Skill file: plugins/saas-packs/mistral-pack/skills/mistral-rate-limits/SKILL.md