๐Ÿ“… let's chat! explore the endless possibilities creating industries that don't exist. click here

openevidence-observability

Set up comprehensive observability for OpenEvidence integrations with metrics, traces, and alerts. Use when implementing monitoring for clinical AI operations, setting up dashboards, or configuring alerting for healthcare application health. Trigger with phrases like "openevidence monitoring", "openevidence metrics", "openevidence observability", "monitor openevidence", "openevidence alerts". allowed-tools: Read, Write, Edit version: 1.0.0 license: MIT author: Jeremy Longshore <jeremy@intentsolutions.io>

Allowed Tools

No tools specified

Provided by Plugin

openevidence-pack

Claude Code skill pack for OpenEvidence medical AI (24 skills)

saas packs v1.0.0
View Plugin

Installation

This skill is included in the openevidence-pack plugin:

/plugin install openevidence-pack@claude-code-plugins-plus

Click to copy

Instructions

# OpenEvidence Observability ## Overview Set up comprehensive observability for OpenEvidence clinical AI integrations in healthcare environments. ## Prerequisites - Prometheus or compatible metrics backend - OpenTelemetry SDK installed - Grafana or similar dashboarding tool - AlertManager or PagerDuty configured ## Key Metrics | Metric | Type | Description | Alert Threshold | |--------|------|-------------|-----------------| | `openevidence_requests_total` | Counter | Total API requests | N/A | | `openevidence_request_duration_seconds` | Histogram | Request latency | P95 > 15s | | `openevidence_errors_total` | Counter | Error count by type | > 5% rate | | `openevidence_cache_hits_total` | Counter | Cache hit count | < 50% rate | | `openevidence_rate_limit_remaining` | Gauge | Rate limit headroom | < 10% | | `openevidence_deepconsult_active` | Gauge | Active DeepConsults | > 50 | ## Instructions ### Step 1: Prometheus Metrics ```typescript // src/monitoring/metrics.ts import { Registry, Counter, Histogram, Gauge, Summary } from 'prom-client'; const registry = new Registry(); // Request metrics export const requestCounter = new Counter({ name: 'openevidence_requests_total', help: 'Total OpenEvidence API requests', labelNames: ['method', 'specialty', 'status'], registers: [registry], }); export const requestDuration = new Histogram({ name: 'openevidence_request_duration_seconds', help: 'OpenEvidence request duration', labelNames: ['method', 'specialty'], buckets: [0.5, 1, 2, 5, 10, 15, 30, 60], registers: [registry], }); // Error metrics export const errorCounter = new Counter({ name: 'openevidence_errors_total', help: 'OpenEvidence errors by type', labelNames: ['error_type', 'specialty'], registers: [registry], }); // Cache metrics export const cacheHits = new Counter({ name: 'openevidence_cache_hits_total', help: 'Cache hit count', registers: [registry], }); export const cacheMisses = new Counter({ name: 'openevidence_cache_misses_total', help: 'Cache miss count', registers: [registry], }); // Rate limit metrics export const rateLimitRemaining = new Gauge({ name: 'openevidence_rate_limit_remaining', help: 'Remaining rate limit', registers: [registry], }); export const rateLimitPercent = new Gauge({ name: 'openevidence_rate_limit_usage_percent', help: 'Rate limit usage percentage', registers: [registry], }); // DeepConsult metrics export const deepConsultActive = new Gauge({ name: 'openevidence_deepconsult_active', help: 'Active DeepConsult requests', registers: [registry], }); export const deepConsultDuration = new Histogram({ name: 'openevidence_deepconsult_duration_seconds', help: 'DeepConsult completion time', labelNames: ['specialty', 'status'], buckets: [30, 60, 120, 180, 300, 600], registers: [registry], }); // Confidence metrics export const confidenceScore = new Summary({ name: 'openevidence_confidence_score', help: 'Response confidence score distribution', labelNames: ['specialty'], percentiles: [0.5, 0.9, 0.95, 0.99], registers: [registry], }); export { registry }; ``` ### Step 2: Instrumented Client Wrapper ```typescript // src/monitoring/instrumented-client.ts import { OpenEvidenceClient } from '@openevidence/sdk'; import { requestCounter, requestDuration, errorCounter, cacheHits, cacheMisses, rateLimitRemaining, rateLimitPercent, confidenceScore, } from './metrics'; import { trace, SpanStatusCode, Span } from '@opentelemetry/api'; const tracer = trace.getTracer('openevidence-client'); export class InstrumentedOpenEvidenceClient { private client: OpenEvidenceClient; private cache: ClinicalQueryCache; constructor(config: any, cache: ClinicalQueryCache) { this.client = new OpenEvidenceClient(config); this.cache = cache; } async query(request: ClinicalQueryRequest): Promise { const { specialty } = request.context; return tracer.startActiveSpan('openevidence.query', async (span: Span) => { const timer = requestDuration.startTimer({ method: 'query', specialty }); try { // Add span attributes span.setAttribute('openevidence.specialty', specialty); span.setAttribute('openevidence.urgency', request.context.urgency); // Check cache first const cached = await this.cache.get(request.question, request.context); if (cached) { cacheHits.inc(); span.setAttribute('cache.hit', true); timer({ cached: 'true' }); requestCounter.inc({ method: 'query', specialty, status: 'cache_hit' }); return cached; } cacheMisses.inc(); span.setAttribute('cache.hit', false); // Make API request const response = await this.client.query(request); // Update rate limit metrics from headers this.updateRateLimitMetrics(response.headers); // Record confidence score confidenceScore.observe({ specialty }, response.confidence); // Cache response await this.cache.set(request.question, request.context, response); // Record success timer({ cached: 'false' }); requestCounter.inc({ method: 'query', specialty, status: 'success' }); span.setStatus({ code: SpanStatusCode.OK }); return response; } catch (error: any) { // Record error timer({ cached: 'false' }); requestCounter.inc({ method: 'query', specialty, status: 'error' }); errorCounter.inc({ error_type: error.code || 'unknown', specialty }); span.setStatus({ code: SpanStatusCode.ERROR, message: error.message }); span.recordException(error); throw error; } finally { span.end(); } }); } private updateRateLimitMetrics(headers: any): void { const remaining = parseInt(headers['x-ratelimit-remaining'] || '0'); const limit = parseInt(headers['x-ratelimit-limit'] || '100'); rateLimitRemaining.set(remaining); rateLimitPercent.set(((limit - remaining) / limit) * 100); } } ``` ### Step 3: Distributed Tracing Setup ```typescript // src/monitoring/tracing.ts import { NodeSDK } from '@opentelemetry/sdk-node'; import { Resource } from '@opentelemetry/resources'; import { SemanticResourceAttributes } from '@opentelemetry/semantic-conventions'; import { TraceExporter } from '@google-cloud/opentelemetry-cloud-trace-exporter'; import { HttpInstrumentation } from '@opentelemetry/instrumentation-http'; import { ExpressInstrumentation } from '@opentelemetry/instrumentation-express'; export function initTracing(): void { const sdk = new NodeSDK({ resource: new Resource({ [SemanticResourceAttributes.SERVICE_NAME]: 'clinical-evidence-api', [SemanticResourceAttributes.SERVICE_VERSION]: process.env.npm_package_version, [SemanticResourceAttributes.DEPLOYMENT_ENVIRONMENT]: process.env.NODE_ENV, }), traceExporter: new TraceExporter(), instrumentations: [ new HttpInstrumentation({ requestHook: (span, request) => { // Don't trace health checks if (request.url?.includes('/health')) { span.setAttribute('http.skip', true); } }, }), new ExpressInstrumentation(), ], }); sdk.start(); process.on('SIGTERM', () => { sdk.shutdown().catch(console.error); }); } ``` ### Step 4: Structured Logging ```typescript // src/monitoring/logger.ts import pino from 'pino'; export const logger = pino({ name: 'clinical-evidence-api', level: process.env.LOG_LEVEL || 'info', formatters: { level: (label) => ({ level: label }), }, // Redact PHI fields redact: { paths: ['patient.*', 'patientId', 'mrn', '*.ssn'], censor: '[REDACTED]', }, }); // OpenEvidence-specific logger export const oeLogger = logger.child({ service: 'openevidence' }); export function logClinicalQuery( queryId: string, specialty: string, duration: number, cached: boolean, confidence?: number ): void { oeLogger.info({ event: 'clinical_query', queryId, specialty, durationMs: duration, cached, confidence, }); } export function logDeepConsult( consultId: string, specialty: string, status: string, duration?: number ): void { oeLogger.info({ event: 'deep_consult', consultId, specialty, status, durationMs: duration, }); } export function logError( error: Error, context: Record ): void { oeLogger.error({ event: 'error', errorType: error.name, errorMessage: error.message, ...context, }); } ``` ### Step 5: Alert Rules ```yaml # prometheus/openevidence_alerts.yaml groups: - name: openevidence_alerts rules: # High error rate - alert: OpenEvidenceHighErrorRate expr: | rate(openevidence_errors_total[5m]) / rate(openevidence_requests_total[5m]) > 0.05 for: 5m labels: severity: warning service: openevidence annotations: summary: "OpenEvidence error rate > 5%" description: "Error rate is {{ $value | humanizePercentage }}" # Critical error rate - alert: OpenEvidenceCriticalErrorRate expr: | rate(openevidence_errors_total[5m]) / rate(openevidence_requests_total[5m]) > 0.20 for: 2m labels: severity: critical service: openevidence annotations: summary: "OpenEvidence error rate > 20%" description: "Critical error rate - possible outage" # High latency - alert: OpenEvidenceHighLatency expr: | histogram_quantile(0.95, rate(openevidence_request_duration_seconds_bucket[5m]) ) > 15 for: 5m labels: severity: warning service: openevidence annotations: summary: "OpenEvidence P95 latency > 15s" description: "95th percentile latency is {{ $value | humanizeDuration }}" # Low cache hit rate - alert: OpenEvidenceLowCacheHitRate expr: | rate(openevidence_cache_hits_total[1h]) / (rate(openevidence_cache_hits_total[1h]) + rate(openevidence_cache_misses_total[1h])) < 0.5 for: 30m labels: severity: warning service: openevidence annotations: summary: "OpenEvidence cache hit rate < 50%" description: "Consider reviewing cache configuration" # Rate limit warning - alert: OpenEvidenceRateLimitWarning expr: openevidence_rate_limit_remaining < 10 for: 1m labels: severity: warning service: openevidence annotations: summary: "OpenEvidence rate limit < 10 remaining" description: "Consider throttling requests" # Service down - alert: OpenEvidenceDown expr: up{job="openevidence"} == 0 for: 1m labels: severity: critical service: openevidence annotations: summary: "OpenEvidence integration is down" description: "No successful health checks for 1 minute" ``` ### Step 6: Grafana Dashboard ```json { "dashboard": { "title": "OpenEvidence Clinical AI", "panels": [ { "title": "Request Rate", "type": "stat", "targets": [{ "expr": "sum(rate(openevidence_requests_total[5m]))", "legendFormat": "req/s" }] }, { "title": "Error Rate", "type": "gauge", "targets": [{ "expr": "sum(rate(openevidence_errors_total[5m])) / sum(rate(openevidence_requests_total[5m])) * 100" }], "fieldConfig": { "defaults": { "max": 100, "thresholds": { "mode": "absolute", "steps": [ {"color": "green", "value": 0}, {"color": "yellow", "value": 5}, {"color": "red", "value": 20} ] } } } }, { "title": "Latency Distribution", "type": "heatmap", "targets": [{ "expr": "sum(rate(openevidence_request_duration_seconds_bucket[5m])) by (le)" }] }, { "title": "Cache Hit Rate", "type": "timeseries", "targets": [{ "expr": "sum(rate(openevidence_cache_hits_total[5m])) / (sum(rate(openevidence_cache_hits_total[5m])) + sum(rate(openevidence_cache_misses_total[5m])))", "legendFormat": "Hit Rate" }] }, { "title": "Rate Limit Usage", "type": "gauge", "targets": [{ "expr": "openevidence_rate_limit_usage_percent" }], "fieldConfig": { "defaults": { "max": 100, "thresholds": { "mode": "absolute", "steps": [ {"color": "green", "value": 0}, {"color": "yellow", "value": 70}, {"color": "red", "value": 90} ] } } } }, { "title": "Confidence Score Distribution", "type": "histogram", "targets": [{ "expr": "openevidence_confidence_score" }] } ] } } ``` ## Metrics Endpoint ```typescript // src/routes/metrics.ts import { Router } from 'express'; import { registry } from '../monitoring/metrics'; const router = Router(); router.get('/metrics', async (req, res) => { res.set('Content-Type', registry.contentType); res.send(await registry.metrics()); }); export default router; ``` ## Output - Prometheus metrics collection - Distributed tracing with OpenTelemetry - Structured logging with PHI redaction - Alert rules for critical conditions - Grafana dashboard ## Observability Checklist - [ ] Metrics endpoint exposed - [ ] Request counters and histograms - [ ] Error counters with labels - [ ] Cache hit/miss tracking - [ ] Rate limit monitoring - [ ] Distributed tracing enabled - [ ] Structured logging configured - [ ] Alert rules deployed - [ ] Dashboard created ## Resources - [Prometheus Best Practices](https://prometheus.io/docs/practices/naming/) - [OpenTelemetry Documentation](https://opentelemetry.io/docs/) - [Grafana Dashboards](https://grafana.com/docs/grafana/latest/dashboards/) ## Next Steps For incident response, see `openevidence-incident-runbook`.

Skill file: plugins/saas-packs/openevidence-pack/skills/openevidence-observability/SKILL.md