๐Ÿ“… let's chat! explore the endless possibilities creating industries that don't exist. click here

openevidence-performance-tuning

Optimize OpenEvidence clinical query performance and response times. Use when improving latency, optimizing query efficiency, or tuning caching for clinical AI applications. Trigger with phrases like "openevidence performance", "openevidence slow", "optimize openevidence", "openevidence latency", "speed up clinical queries". allowed-tools: Read, Write, Edit version: 1.0.0 license: MIT author: Jeremy Longshore <jeremy@intentsolutions.io>

Allowed Tools

No tools specified

Provided by Plugin

openevidence-pack

Claude Code skill pack for OpenEvidence medical AI (24 skills)

saas packs v1.0.0
View Plugin

Installation

This skill is included in the openevidence-pack plugin:

/plugin install openevidence-pack@claude-code-plugins-plus

Click to copy

Instructions

# OpenEvidence Performance Tuning ## Overview Optimize OpenEvidence clinical query performance for point-of-care response times. ## Prerequisites - OpenEvidence integration running - Monitoring configured (see `openevidence-observability`) - Understanding of caching strategies - Access to performance metrics ## Performance Targets | Metric | Target | Critical | |--------|--------|----------| | Clinical Query P50 | < 3s | > 10s | | Clinical Query P95 | < 8s | > 15s | | Clinical Query P99 | < 15s | > 30s | | DeepConsult Start | < 5s | > 15s | | Cache Hit Rate | > 70% | < 50% | ## Instructions ### Step 1: Query Optimization ```typescript // src/services/optimized-query.ts // 1. Optimize question structure function optimizeQuestion(question: string): string { // Remove unnecessary words let optimized = question .replace(/\b(please|can you|could you|I want to know)\b/gi, '') .replace(/\s+/g, ' ') .trim(); // Ensure question ends with ? if (!optimized.endsWith('?')) { optimized += '?'; } return optimized; } // 2. Optimize context to reduce processing function optimizeContext(context: ClinicalContext): ClinicalContext { return { specialty: context.specialty, urgency: context.urgency, // Only include relevant patient context ...(context.patientAge && { patientAge: context.patientAge }), ...(context.patientSex && { patientSex: context.patientSex }), // Limit conditions to top 5 most relevant ...(context.relevantConditions && { relevantConditions: context.relevantConditions.slice(0, 5), }), // Limit medications to top 10 ...(context.currentMedications && { currentMedications: context.currentMedications.slice(0, 10), }), }; } // 3. Optimize query options const OPTIMIZED_OPTIONS = { maxCitations: 5, // More citations = slower response includeGuidelines: true, // High value, low overhead includeDrugInfo: false, // Only when needed prioritizeRecent: true, // Faster index access }; ``` ### Step 2: Intelligent Caching Layer ```typescript // src/cache/clinical-cache.ts import { createHash } from 'crypto'; import Redis from 'ioredis'; interface CacheConfig { redis: Redis; defaultTTL: number; maxEntries: number; } interface CachedResponse { data: any; cachedAt: number; ttl: number; hitCount: number; } export class ClinicalQueryCache { private redis: Redis; private defaultTTL: number; private prefix = 'oe:query:'; constructor(config: CacheConfig) { this.redis = config.redis; this.defaultTTL = config.defaultTTL; } // Generate cache key from query private generateKey(question: string, context: ClinicalContext): string { const normalized = JSON.stringify({ q: question.toLowerCase().trim(), s: context.specialty, u: context.urgency, }); return this.prefix + createHash('sha256').update(normalized).digest('hex').substring(0, 16); } // Determine TTL based on query type private getTTL(question: string, context: ClinicalContext): number { const lowerQuestion = question.toLowerCase(); // Short TTL for time-sensitive queries if (context.urgency === 'stat' || context.urgency === 'urgent') { return 300; // 5 minutes } // Longer TTL for stable medical facts if (lowerQuestion.includes('mechanism') || lowerQuestion.includes('pharmacokinetics') || lowerQuestion.includes('half-life')) { return 86400; // 24 hours } // Medium TTL for treatment guidelines (may update) if (lowerQuestion.includes('guideline') || lowerQuestion.includes('first-line') || lowerQuestion.includes('recommended')) { return 3600; // 1 hour } return this.defaultTTL; } async get(question: string, context: ClinicalContext): Promise { const key = this.generateKey(question, context); const cached = await this.redis.get(key); if (!cached) return null; const entry: CachedResponse = JSON.parse(cached); // Increment hit count entry.hitCount++; await this.redis.setex(key, entry.ttl, JSON.stringify(entry)); return entry.data; } async set( question: string, context: ClinicalContext, data: any ): Promise { const key = this.generateKey(question, context); const ttl = this.getTTL(question, context); const entry: CachedResponse = { data, cachedAt: Date.now(), ttl, hitCount: 0, }; await this.redis.setex(key, ttl, JSON.stringify(entry)); } async invalidate(pattern?: string): Promise { const keys = await this.redis.keys(this.prefix + (pattern || '*')); if (keys.length === 0) return 0; return this.redis.del(...keys); } async getStats(): Promise<{ totalKeys: number; memoryUsage: string; hitRate: number; }> { const keys = await this.redis.keys(this.prefix + '*'); const info = await this.redis.info('memory'); let totalHits = 0; let totalEntries = 0; for (const key of keys.slice(0, 100)) { const cached = await this.redis.get(key); if (cached) { const entry: CachedResponse = JSON.parse(cached); totalHits += entry.hitCount; totalEntries++; } } return { totalKeys: keys.length, memoryUsage: info.match(/used_memory_human:(\S+)/)?.[1] || 'unknown', hitRate: totalEntries > 0 ? totalHits / totalEntries : 0, }; } } ``` ### Step 3: Connection Pooling & Keep-Alive ```typescript // src/openevidence/optimized-client.ts import { OpenEvidenceClient } from '@openevidence/sdk'; import { Agent } from 'https'; // Reuse connections with keep-alive const httpsAgent = new Agent({ keepAlive: true, keepAliveMsecs: 30000, maxSockets: 10, maxFreeSockets: 5, }); export const optimizedClient = new OpenEvidenceClient({ apiKey: process.env.OPENEVIDENCE_API_KEY!, orgId: process.env.OPENEVIDENCE_ORG_ID!, httpAgent: httpsAgent, timeout: 30000, }); // Pre-warm connections on startup export async function warmupConnections(): Promise { console.log('[Performance] Warming up OpenEvidence connections...'); try { // Make a lightweight request to establish connection await optimizedClient.health.check(); console.log('[Performance] Connection pool warmed up'); } catch (error) { console.error('[Performance] Warmup failed:', error); } } ``` ### Step 4: Request Batching ```typescript // src/services/batch-query.ts import DataLoader from 'dataloader'; // Batch multiple clinical queries const queryBatcher = new DataLoader< { question: string; context: ClinicalContext }, ClinicalQueryResponse >( async (queries) => { // OpenEvidence may support batch API in future // For now, parallelize within rate limits const results = await Promise.all( queries.map(q => optimizedClient.query({ question: q.question, context: q.context, })) ); return results; }, { maxBatchSize: 5, // Respect rate limits batchScheduleFn: (callback) => setTimeout(callback, 50), // 50ms window cacheKeyFn: (query) => `${query.question}:${query.context.specialty}`, } ); // Usage in service export async function batchedQuery( question: string, context: ClinicalContext ): Promise { return queryBatcher.load({ question, context }); } ``` ### Step 5: Response Streaming (When Available) ```typescript // src/services/streaming-query.ts // Use streaming for faster perceived performance export async function streamingClinicalQuery( question: string, context: ClinicalContext, onPartialResponse: (partial: string) => void ): Promise { // Check if streaming is supported if (optimizedClient.supportsStreaming?.()) { const stream = await optimizedClient.query.stream({ question, context, }); let fullAnswer = ''; for await (const chunk of stream) { fullAnswer += chunk.text; onPartialResponse(fullAnswer); } return stream.finalResponse; } // Fallback to regular query const response = await optimizedClient.query({ question, context }); onPartialResponse(response.answer); return response; } ``` ### Step 6: Performance Monitoring ```typescript // src/monitoring/performance-metrics.ts import { Histogram, Counter, Gauge } from 'prom-client'; // Latency histogram const queryLatency = new Histogram({ name: 'openevidence_query_duration_seconds', help: 'Clinical query latency', labelNames: ['specialty', 'urgency', 'cached'], buckets: [0.5, 1, 2, 5, 10, 15, 30], }); // Cache metrics const cacheHits = new Counter({ name: 'openevidence_cache_hits_total', help: 'Cache hit count', }); const cacheMisses = new Counter({ name: 'openevidence_cache_misses_total', help: 'Cache miss count', }); // Current queue size const queueSize = new Gauge({ name: 'openevidence_queue_size', help: 'Current request queue size', labelNames: ['priority'], }); // Instrumented query function export async function instrumentedQuery( question: string, context: ClinicalContext, cache: ClinicalQueryCache ): Promise { const timer = queryLatency.startTimer({ specialty: context.specialty, urgency: context.urgency, }); // Check cache first const cached = await cache.get(question, context); if (cached) { cacheHits.inc(); timer({ cached: 'true' }); return cached; } cacheMisses.inc(); // Query API const response = await optimizedClient.query({ question, context }); // Cache response await cache.set(question, context, response); timer({ cached: 'false' }); return response; } ``` ## Performance Checklist - [ ] Query optimization applied - [ ] Caching layer configured - [ ] Connection pooling enabled - [ ] Keep-alive connections - [ ] Request batching where applicable - [ ] Monitoring metrics collecting - [ ] Performance baselines established ## Output - Optimized query construction - Intelligent caching with TTL management - Connection pooling for efficiency - Performance metrics and monitoring ## Error Handling | Performance Issue | Detection | Resolution | |-------------------|-----------|------------| | High P95 latency | Metrics alert | Check cache hit rate, optimize queries | | Low cache hit rate | < 50% hits | Review TTL strategy, increase cache size | | Connection timeouts | Timeout errors | Check keep-alive, increase pool size | | Memory pressure | Redis alerts | Implement LRU eviction | ## Resources - [Redis Caching Best Practices](https://redis.io/docs/manual/client-side-caching/) - [DataLoader Documentation](https://github.com/graphql/dataloader) ## Next Steps For cost optimization, see `openevidence-cost-tuning`.

Skill file: plugins/saas-packs/openevidence-pack/skills/openevidence-performance-tuning/SKILL.md